Data Mining in Maintenance of
Electronic Component Libraries

Esa Alhoniemi
Timo Knuutila
Mika Johnsson
Juha Royhkio
Olli S. Nevalainen

= g = Turku Centre for Computer Science

1 [[TUCS Technical Reports
[1—[]

= [=
I EE
E=E
TUCS

Data Mining in Maintenance of
Electronic Component Libraries

Esa Alhoniemi

University of Turku, Department of Information Technology
Lemminkaisenkatu 14 A, F1-20520 Turku, Finland

Timo Knuutila

University of Turku, Department of Information Technology
Lemminkaisenkatu 14 A, FI-20520 Turku, Finland

Mika Johnsson

Valor Computerized Systems (Finland) Oy
Ruukinkatu 2, FI-20540 Turku, Finland

Juha Royhkio

Valor Computerized Systems (Finland) Oy
Ruukinkatu 2, FI-20540 Turku, Finland

Olli S. Nevalainen

University of Turku, Department of Information Technology
Lemminkaisenkatu 14 A, F1-20520 Turku, Finland

Turku Centre for Computer Science
TUCS Technical Report No 605
April 2004

ISBN 952-12-1336-1
ISSN 1239-1891

Abstract

In this study!, adding data of new components to an existing electronic
component library in considered. The suggested approach uses a particular
data mining algorithm to support interactive input of the data. The basic
idea is to compute association rules between the attributes of the existing
components in the library. The rules can then be used to ease the input of
the attributes of a new component. The scheme is general in the sense that
the same approach can be easily used in other similar applications as well.
We first introduce the necessary basic concepts of the association rules and
then illustrate the application of the suggested approach using a fraction of
a real component library.

Keywords: association rule, data mining, electronic component library,
printed circuit board assembly

TUCS Laboratory
Algorithmics Group

!This work was partially supported by the Academy of Finland, Grant 104795.

1 Introduction

Successful operation of a printed circuit board (PCB) assembly robot requires
three things: a numerical control (NC) program, an electronic component
library, and the configuration data of the machine. In the assembly of a new
product using a PCB robot, generation of a new NC program is usually quite
straightforward. The machine configuration data needs to be changed seldom
and is therefore often not a problem. A laborious task in the assembly of a
new product is the maintenance of the electronic component library, which
is considered in this article.

In the library, each component is characterized by dozens or even hun-
dreds of attributes, such as the dimensions of the component, nozzles, vision
data, handling speeds, polarity, and feeders. There exist both machine in-
dependent and dependent attributes. The machine independent attributes
can be directly obtained from some external source like a CAD library or
Valor parts library?. In the machine dependent data, there are several at-
tributes the values of which depend on the type of a particular machine and
some even on a specific machine. The reason for this is that the values of
some attributes are may depend e.g. on the physical environment, like the
lighting conditions of the machine. Generation of the machine-specific data
turns out to be the most laborious task when the assembly of a new product
is initiated on a certain machine. Traditionally, experience of the human
operators, manual browsing through the specification documents, and test-
ing by the machine using trial and error is required. The novel approach
suggested in this paper — which utilizes the information in the existing com-
ponent libraries — does not eliminate all the manual work, but provides a
faster semiautomated procedure for the generation of the data.

Even though the component library data has a very complex logical struc-
ture, it is possible to ignore without loss of generality the details concerning
the structure of the data. From now on, the data of the component library
is seen as a table, the rows of which correspond to the components and the
columns to the different component attributes. Each time a previously un-
used component type is included in the assembly by a machine, its attributes
have to be fed into the library which requires a large amount of manual check-
ing. This means adding a new row in the data table, which may amount up
to 100 rows.

The main contribution of this study is a novel data mining [5] approach to
support a human operator to fill in or check the correctness of the attributes

2The library contains data of about 30-40 millions of components, see www.valor.com
for more details.

for a new component attributed to some component placement machine. The
basic idea is to use the existing component libraries to construct a set of
so-called association rules, which describe dependencies between values of
different attributes. The rules can then be used either to predict the value
of an unknown attribute based on the so far recorded ones, or to detect
potentially erroneous user input. This is possible due to the fact that the
component attributes are not completely independent of each other, but the
library contains much redundant information. The redundancy could be
removed by clever data structures and by adding dependencies to the library.
However, these kind of solutions do not work due to the highly dynamic
nature and complex rules of the component attributes.

The goal of this study is to demonstrate the use of the suggested data
mining approach and to preliminarily evaluate its feasibility using real data.
Determination of the so-called large (or frequent) itemsets (see for exam-
ple [5, pp. 429-433]) — which is an essential part of the computation of the
association rules — is carried out using the well-known data mining algorithm
Apriori [1]. In the experiments, a small fraction of a component library with
317 components, each characterized by 174 attributes, was used. When an-
alyzing the data, we observed that a large proportion of the attributes were
constant (or almost constant) and some of them had a one-to-one correspon-
dence with some other attribute. Further, the values of many other attributes
could be predicted by some other attributes using rules with good support
and high confidence. To summarize, in the light of the obtained results, the
approach suggested in this paper seems to be promising and deserves to be
studied in the future in more depth using full-scale component libraries.

This article has been organized as follows. The content of the component
library is described in Section 2. In order to keep the study self-contained,
the basic ideas of the data mining techniques used are briefly discussed in
Section 3. Experimental results using the association rule algorithm Apriori
are shown in Section 4. Section 5 contains conclusions and lists some topics
for the future work.

2 Component library

A component library is a 2-dimensional data table, the columns of which
are component attributes and the rows correspond to the components, cor-
respondingly. In the general case, the scale of an attribute may be nominal,
ordinal, interval, or ratio [7, pp. 12-14]. For simplicity, in this work we as-
sume that the attributes are nominal (even though this is not actually true
for all attributes), which means that all one can say about two values of an

2

attribute whether they are equal or not. However, in the data mining lit-
erature there exist approaches to deal with interval scale attributes as well.
In practice, such approaches often discretize the data and use clustering al-
gorithms or some other underlying inference mechanisms for the generation
of rules [2, 3, 4, 8, 9]. Use of such an algorithm is straightforward in our
application.

Table 1 contains a simple synthetic example of a component library which
is used through the representation for illustration purposes.

Table 1: A synthetic component library with five components and five at-
tributes.

component attribute
1 2 3 4 5
1 A A A A A
2 A A B A B
3 B A B B C
4 B A B C D
5 B A B B E

2.1 Data transformation

Before the component library can be used in the mining of association rules,
the data table needs to be transformed into a set of transactions each of
which consists of a set of items. In our application an item is a specific value,
say A, of an attribute i (i = 1,...,5). Such an item, denoted by A;, can
thus be seen as an attribute-value pair. Hence, a transaction in this context
stands for the set of all the attribute-value pairs of a component. Such a
coding is required, because a single value (like A) may occur as a value of
more than one attribute, but the two items (A; and A;, j # i) are different
and they must thus be distinguished from each other in the coding.

Also note that the data mining algorithms used in this study allow the
number of items to vary in the transactions (i.e., the rows of the table may
have a different number of columns), but every row of our data contains a
constant number of columns. Table 2 shows the data of the Table 1 converted
into five transactions, each corresponding to a component of the library.

3

Table 2: Data of Table 1 converted into transactions.

transaction items
1 A Ay A3 Ay As
2 A Ay, By Ay By
3 Bl A2 Bg B4 05
4 Bl A2 Bg 04 D5
5 B, A, By By Ej

2.2 Removal of certain attributes

Before the computation of the association rules, it is sensible to make compu-
tation of the association rules lighter by removing some attributes from the
database. Roughly speaking, such attributes include the ones which would
either be part of every rule or would never be part of any rule.

e Attributes which have a constant value for every component may be
removed. The best prediction for such an attribute is naturally the
constant value which is independent of the values of any other attributes
and thus needs not to be predicted.

e Attributes which have different values for (almost) every component
may be removed, because computation of the association rules requires
that two attributes have multiple instances of one value. In other words,

no rules for attributes with a large number of different values can ever
be found.

e Attributes which have a one-to-one dependency with each other can all
be removed except for one such an attribute. A value of an attribute
with one-to-one dependency with some other attribute can easily be
predicted once the dependency is known.

One possible heuristic criterion for removal of the attributes of the first
two types in the list above is the use of entropy.® The entropy is close to
zero for attributes with almost constant values whereas for attributes with a
large number of different values it is high. This suggests that there should
be a lower as well as an upper limit for the entropy of the attributes which
are considered further.

3Use of entropy is only one possible heuristics among many that can be used for this
purpose.

The entropy of the ith attribute is computed using the formula
M;
H;=-) PjlogP;, (1)
j=1

where M; is the number of values of attribute 4, and P; is the probability of
the jth value to be present in the data; it can be estimated from the database
as the inverse of the number of occurrences of the jth value.

For example, consider the first column (attribute) of Table 2. It contains
two different values (A4; and By), and hence M; = 2. The probability estimate
of the first value is P, = P(A;) = 2/5 = 0.4, and the probability estimate
of the second value is P, = P(B;) = 3/5 = 0.6. Hence, the entropy of that
attribute is H; ~ 0.673. Correspondingly, the entropies of the other three
attributes are 0, 0.500, 1.055, and 1.609. The maximum entropy H =~ 1.609
is obtained when all the values are different as is the case for attribute 5.

Hence, it might be sensible to remove the second and the fifth attribute
from all the transactions in the case of the synthetic data.

Table 3: Data of Table 2 with two attributes removed.

transaction items
1 A Ay Ay
2 A1 B3 A4
3 B, Bs; B,
4 B, By (Cy
5 B, Bs; B,

The one-to-one dependencies are simply computed by passing through
the whole database and checking whether certain items always occur in pairs
or not. In the example data there are no such dependencies. However, if the
fourth attribute of the component 4 would be By, attributes 1 and 4 had a
one-to-one dependency.

3 Mining of association rules

In this section, we recall the basic terminology of the mining of association
rules. A reader who is familiar with the subject may skip to Section 4, where
the application itself is described.

Data mining is defined as “analysis of (often large) observational data sets
to find unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owner” [5, p. 1]. Here,
the data consists of the attribute values of components which are stored
in a component library. The relationships to be found are dependencies
between different combinations of the attribute values. These dependencies
are called association rules. Using the synthetic data of Table 3, one possible
association rule would be

By ANBs = By

which states that if the value of the first attribute is B; and the value of the
third attribute is Bs, then the value of the fourth attribute is B;. In order
to construct this kind of rules, we first briefly consider two essential concepts
related to the association rules: support and confidence.

Support. Support of an itemset X indicates the number of transactions

which contain all the items in X. For example, support of itemset { By, Bs, B,},
denoted by support(B;BsBy), is 2. It is clear from the definition, that the

support of a subset of an itemset is always greater or equal to support of

the original set. For example support(B;B;) = 3 > support(B;B3By). In

the computation of the association rules, itemsets with support greater than

or equal to some predefined limit are computed. These itemsets are called

large itemsets. If the limit is set to 2, the large itemsets of our example are

{Bi, B3}, {B1, B3, By} and {A4;, A4}. The supports of these large sets are 3,

2, and 2, correspondingly.

Confidence. Confidence of a rule indicates how often the rule holds. It is
defined as the ratio between the support of all items in the rule and support
of all items in the left-hand side of the rule. For example, the confidence of
our example rule B; A B3 = B, is given by

t(B1B3B
conf = SuPport(BiBsBi)

— 2~ 67%
support(B;Bs) 3 o

3.1 Computation of association rules

The computation of the association rules consists of two separate subtasks.
They are the computation of the large itemsets, and finding the rules using
the large itemsets. Before the computation, two parameters have to be fixed:
the minimal support (minsup) and the minimal confidence (minconf) of the
rules. The number of rules strongly depends on these two parameters.

Large itemsets. As stated earlier, a large itemset is an itemset with sup-
port greater than or equal to a given minimum support. In this work,
the large itemsets are computed using the well-known Apriori algorithm [1],
which is described below in Algorithm 1. A large itemset with & items (k-
itemset) is denoted by Lx. A potentially large (candidate) itemset with &
items is Cf, respectively. The data collection (component library) is denoted
by D.

Algorithm 1 Algorithm Apriori.
1: L= {large l-itemsets };
2: for (k = 2, Llc—l 7é 0, k++) do

3: Oy = apriori_gen(Lj_1);

4: for all candidates ¢ € C}, do
5: c.count = 0;

6: end for

7: for all transactions ¢t € D do
8: C, = {Ck | Cy C t};

9: for all candidates ¢ € C; do
10: c.count + +;

11: end for

12: Ly = {c € Cy | c.count > minsup};
13: end for

14: end for

15: return |J, Ly;

Set L, contains the large itemsets of one attribute. These can be trivially
found by starting with the first possible value of the first attribute and by
counting the number of rows in which it appears. If this number is greater
than minsup the value is accepted and included in L;. Then the same is
repeated for the second possible value of the first attribute and so on. This
counting operation is repeated for all the attributes.

The Apriori algorithm uses function apriori_gen which takes all the large
(k—1)-itemsets as argument and computes out of them the potentially large

7

itemsets with £ items. The function has two steps: join and prune. The join
step (Algorithm 2) first generates a set of candidate k-itemsets.

Algorithm 2 Join step of apriori_gen.

1: Cf = @;

2: for all large (k — 1)-itemsets p, ¢ € Ly_1 do

3: Cr = Ck U {p-itemy, p.itemy, ..., p.itemy_1, q.itemy_1 | p # g,
p.itemy_1 < g.itemy_1};

4: end for

5: return C;

The prune step (Algorithm 3) removes some of the candidate itemsets.
The removal is based on the monotonicity property of large sets, which states
that a k-itemset cannot be large if all of its (k — 1)-subsets are not large.

Algorithm 3 Prune step of apriori_gen.
1: for all itemsets ¢ € C} do

2: for all (k — 1)-subsets s of ¢ do
3: if (s ¢ Lx_1) then

4: Cr = Cy \ C;

5: end if

6: end for

7: end for

8: return Cy;

To summarize, the join step produces the candidate itemsets, that is,
the set of potentially large k-itemsets using the known large (k — 1)-itemsets.
The prune step removes some of them based on the monotonicity of large sets
without counting any itemsets from the data. For the remaining candidates,
the supports of the remaining candidates need to be computed from the data
in order to determine the actual large k-itemsets.

Association rules. When the large sets have been computed using the
Apriori algorithm, they are used in the computation of rules. From each large
set, all the possible rules are formed so that all possible variable combinations
are present on the left-hand and right-hand side of the rule. The rules which
have smaller confidence than the predefined minimum (minconf) are deleted
whereas all the other rules are retained, see Algorithm 4 for pseudo code.
Algorithm 4 describes generation of the rules in the general case. In this
work we are looking for rules with a single item on the right hand side of the

8

Algorithm 4 Procedure genrules.
for all large itemsets Iy, £ < 2 do
A = {(m — 1)-itemsets a,, 1]|am 1 C A };
for all a,,_1 € A do
conf = support(ly)/support(am,_1);
if (conf > minconf) then
Output the rule a,,_1 = (lx — a,—1) with confidence = conf and
support = support(ly);
end if
if (m—1>1) then
genrules(lg, G 1)
end if
end for
end for

rule and ignoring all the others, because we are interested in prediction of
one attribute at a time, only. This restriction is made in order to keep the
update operations simple enough to be managed by a human operator.

3.2 An illustration on the use of the suggested scheme

Before we consider the experimental results, let us first look at a concrete
illustration to see how to use the predictive scheme using another synthetic
example shown in Figure 1. It shows how adding 8 attributes of a component
to a component library can be supported by the scheme suggested in this
article.

‘ 10 ‘ ‘ ‘ ‘ red ‘ ‘ ‘ top ‘ Input of a new component begins;
the constants are displayed

User gives a value for attribute #2,
‘ 10 I ‘ I ‘ ‘ red ‘ ‘ ‘ top ‘ the system shows that it is almost
! constant
| Z95% !
| _F 5%
‘ 10 ‘ 7 I 6 I ‘ red ‘ I 8 I top ‘ Use_zr gives a value for attribute #3,
‘ 1 which has one-to—one dependence
l ! with attribute #7

‘ 10 ‘ 7 ‘ 6 ‘ ‘ red I fastl 8 ‘ top ‘ User gives a value for attribute #6;
no rule for that attribute exists

‘ 10 ‘ 7 ‘ 6 I ‘ I red ‘ fast‘ 8 ‘ top ‘ User gives a value for attribute #4,
the system displays the most
! confident rule

‘ 10 ‘ z ‘ 6 ‘ 32 ‘ red ‘ fast ‘ 8 ‘ top ‘ Input is completed

Figure 1: A fictional example of typing in attributes for one component. If
there exist some recommended values for some attributes, they can be also
shown to the user who then either accepts or rejects them.

10

4 Experiments

A fraction of a real-world component library with 317 components and 174
attributes was used in this experiment. In a full-scale library the number of
components is naturally much larger, but the number of attributes is realistic
in our example.

4.1 Preprocessing of the data

The data table was transformed into transactions as described above and the
entropy was computed for every attribute using Equation 1. The attributes,
entropy of which was below 10% or above 80% of maximum entropy, were
discarded. The entropies of the 174 attributes are shown in Figure 2. The
two dashed lines depict the lower and the upper entropy bounds for the at-
tributes which were used in the computation of the association rules. This
action decreased the number of attributes to 48. Next, among the remaining
attributes the ones with one-to-one correspondence with some other attribute
were to be removed. However, such attributes were not found in the remain-
ing data. (Originally there were 37 such attributes in the data, but they were
already discarded based on their entropies.)

08«

Entropy

0.4r

0.2r

50 100 150
Attributes (sorted by entropy)

Figure 2: The attributes of the sample data set ordered in an ascending order
according to the entropy.

11

4.2 Computation of the rules

Large itemsets. After the preprocessing, there were 48 attributes left
which were used to compute the association rules. These attributes were
used to compute the large sets for different supports (159, 174, 190, 206,
222, 238, 254, 269, 285), which correspond to 50, 55, ..., 90 % proportion
of 317, the total number of components. The number of resulting large sets
for each support is shown in Figure 3. Also, the size of the largest itemset is
shown for each support level. For example, there are 16 large itemsets with
minimum support of 206 (65 % of maximum). This means that there are
16 different sets of attribute-value pairs such that the pairs of every set are
present at least for 206 components, and the size (i.e., the number of pairs)
of the largest set is 4.

As can be observed, the number of large sets grows rapidly as the mini-
mum support decreases. Also note that if the minimum support is set to a
too small value, the computation of large sets may become computationally
infeasible.

250

200

150

100

Number of large sets

(o)
o

%0 60 70 80 90
Support (% of maximum)

Figure 3: The number of large sets as a function of minimum support. The
number above every point denotes the number of items (i.e., attribute-value
pairs) in the largest itemset for the corresponding support.

Association rules. Next, rules with only one item on the right-hand side of
the rule were computed for each large itemset using minimum confidences of
50, 55, ..., 95 %. The number of obtained rules is shown for each confidence

12

level and support in Figure 4. The number of rules for each support level
is naturally greater than the number of large sets, because it is possible to
obtain multiple rules from the items of a large set. For example, if a large
itemset is { By, B3, B, }, it is possible to obtain nine rules: B; = Bj, B; = By,
By = By, By = By, By = B, By = B;, By = B3B,;, By = BBy, and
B, = BlBg.

1600
1400 i 1

1200 50 % confidence 1

_----95 % confidence :

—
o
o
o

Py
\

800]

6001 2}

Number of rules

400}]

2001 :]

Py . -

%0 60 70 80 90
Support (% of maximum)

Figure 4: The number of rules as a function of the support for different
confidence levels 50, 55, ..., 95% (curves from top to bottom).

4.3 Characterization of the obtained rules

The illustration of the number of rules is only one characterization of the
obtained rules. An important quantity is also the number of rules with
different predictions, that is, different items on the right-hand side of the rule.
The number of the different predictions for different support and confidence
levels is shown in Figure 5.

Finally, in Figure 6 there are some of the 302 rules which were obtained
when the minimum support was set to 55 % of the maximum and minimum
confidence to 50 %.

13

N
(63}

N
o

=50 % confidence .

=-95 % confidence

—_ —_
o)]
T T

)]

Number of different predictions

%o 60 70 80 90
Support (% of maximum)

Figure 5: The number of different predictions (right-hand side items in the
rules) as a function of support and confidence.

#167=0 => #33=Normal (57 %, 100 %)

#170=0 => #31=0.00 (56 %, 100 %)

#40=NORMAL CHK => #36=1 (56 %, 77 %)

#38=20 AND #39=60 => #80=0 (56 %, 89 %)

#59=1 => #40=NORMAL CHK (56 %, 79 %)

#59=1 AND #104=0 AND #163=100 => #58=1 (56 %, 99 %)
#58=1 AND #59=1 AND #104=0 => #163=100 (56 %, 88 %)
#104=0 => #47=5 (58 %, 65 %)

#38=20 => #39=60 (63 %, 96 %)

Figure 6: A small fraction of the obtained rules, when minimum support was
55 % of the maximum and the minimum confidence was 50 %, correspond-
ingly. The numbers in the parentheses after each rule indicate the support
(as percentace of the maximum support) and the confidence of the rule.

5 Conclusions and future work

In this article, we presented a new concept for the maintenance of large
electronic component libraries or any other similar database which is based
on mining association rules from an existing database. We also demonstrated

14

the use of such an approach and showed that at least the small randomly
chosen fraction of the commercial component library did contain enough
redundancy to form reliable rules with good support and confidence. In
the light of the results obtained it seems that the association rule mining
approach is capable of finding useful dependencies in this data. Several issues
to be considered in the further research are listed below.

e The tests should be carried out using the entire database to fully de-
termine the usability of the approach. This requires not only similar
tests as described above, but also development of a software prototype
for the maintenance of the library to verify that it is actually possible
for a human to fully benefit from the additional information provided
by the rules.

e In this application, data is in a table form and the rules with only one
item in the right-hand side of the rule are of interest. Under these as-
sumptions, it is possible to make simplifications in the used algorithms
to lighten the computational burden of the computation of the rules.
These were not required in the experiments carried out in this study,
but this is necessary for full-scale real-world applications.

e [t is very common that a large database contains entries which are sig-
nificantly different from the majority of the data. Such entries, outliers,
in this particular application are components which have an unusual
combination of attribute values. This may be due to the fact that there
has occurred a typing error during the input of the attributes — or the
component may actually be somehow different from the others. Identi-
fication and removal of outliers would lighten computation of the rules
as well.

e In this study, the association rules were computed using a batch run
over the whole library. In reality, components are gradually added into
the component libraries. If an incremental version of the rule mining
algorithm would exist, it naturally dramatically reduced the amount of
required computational resources when the rules are updated. This is
especially true for the item frequency counters.

e In the computation of the association rules, it was assumed that all the
attributes were categorical. In reality, in our data a small fraction of
the attributes were numerical. When large databases with numerical
attributes are considered, some strategy to deal with such an attributes
must be adopted, see [2, 3, 4, 8, 9].

15

e In addition to Apriori [1] algorithm used in this work, there exist many
other algorithms for mining association rules, see for example [6, 10].
One important issue in the future work is also to consider which algo-
rithm performs best for our data.

Acknowledgments

We

wish to thank Dr. Bart Goethals, Basic Research Unit at Helsinki Uni-

versity, Finland for the software* used in the experiments.

References

1]

2]

7]

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Proceedings of the 20th International Conference
on Very Large Databases, 1994.

Yonatan Aumann and Yehuda Lindell. A statistical theory for quanti-
tative association rules. In Proceedings of the 5th ACM SIGKDD Inter-
national Conference on Data Mining (KDD ’99), pages 261-270. ACM
Press, 1999.

Sergey Brin, Rajeev Ratogi, and Kyuseok Shim. Mining optimized gain
rules for numeric attributes. In Proceedings of the 5th ACM SIGKDD
International Conference on Data Mining (KDD ’99), pages 135-144.
ACM Press, 1999.

Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi
Tokuyama. Mining optimized association rules for numeric attributes.
In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Sympo-

sium on Principles of Database and Knowledgebase Systems (PODS
’96), pages 182-191. ACM Press, 1996.

David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data
Mining. MIT Press, 2001.

Jochen Hipp, Ulrich G&+#252;ntzer, and Gholamreza Nakhaeizadeh. Al-
gorithms for association rule mining — a general survey and comparison.
SIGKDD Ezplorations Newsletter, 2(1):58-64, 2000.

Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

4

http://www.cs.helsinki.fi/u/goethals/software/

16

[8] R. J. Miller and Y. Yang. Association rules over interval data. In
Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data, pages 452-461. ACM Press, 1997.

[9] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative as-
sociation rules in large relational tables. In Proceedings of the ACM
SIGMOD Conference on Management of Data (SIGMOD ’96), pages
1-12. ACM Press, 1996.

[10] Geoffrey I. Webb. Efficient search for association rules. In Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 99-107. ACM Press, 2000.

17

Turku Centre for Computer Science
Lemminkaisenkatu 14

FIN-20520 Turku

Finland

http://www.tucs.fi

University of Turku
e Department of Information Technology
e Department of Mathematics

Abo Akademi University
e Department of Computer Science
o Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
o Institute of Information Systems Science

