4. Multidimensional data structures

Two main categories of data:

- **Point data**: Database objects are k-tuples in a k-dimensional space. Geometrically, tuple elements correspond to *coordinates* in space. The domains of elements can be arbitrary. Applications: *multi-attribute retrieval* from relational databases (access methods based on several attributes), document databases, *feature vectors* of multimedia objects. [Topic of Chapters 3, 6]

- **Spatial data**: Database objects have some kind of *shape* and *size*, such as lines, rectangles, and polygons on the 2D Euclidean plane, or lines, rectangular boxes, and polyhedrons in 3D space. Points are a special case of spatial data types. Applications: CAD drawings, VLSI design, geography, image processing. [Topic of Chapter 5]
Multidimensional data structures: preliminaries

Terminology:
- PAM = Point Access Method
- SAM = Spatial Access Method

General requirements for multidimensional data structures:
- Good storage utilization should be guaranteed (70% is sufficient)
- Simple tasks should require only a small number of disk accesses
- Different dimensions should be treated in a symmetric way
- Clustering of objects should conform with geometric proximity, to support efficient processing of range queries.
- The structure should enable dynamic reorganization, when the data set grows and shrinks (such as B-tree, linear hashing, etc.).
- Algorithms for search and update should be simple.
- The structure should support different kinds of queries.
Illustration of basic query types in 2 dimensions

X = data point

Partial match: (4, *)

Exact match: (8, J)

Range search: (10..13, D..G)
Typical properties of multidimensional indexes in external memory

- Tree structure, with disk pages as nodes
- Internal nodes (directory) contain branching info + child pointers
- Leaf nodes contain actual data points (vectors)
- Points should be clustered so that spatially adjacent points are positioned in the same leaf nodes.
- Page overflow is handled by a split, plus maintenance of the parent; the overflow may propagate upwards.
- Page underflow is handled by merging siblings, plus maintaining the parent data; the underflow may propagate upwards.
- GiST = Generalized Search Tree (Hellerstein, Naughton, Pfeffer; 1995): Generic tree supporting of the above principles
- GiST implementation in Informix Server (Kornacker 1999) and currently also in PostgreSQL.
Arranging a multidimensional point space

- Fixed number \((k)\) of dimensions, each with its own domain of values.
- Variable-dimensional objects (such as documents with keywords) may be mapped to a fixed-length representation (e.g. *signature*, *bitmap*, etc.)
- Typical approach for arranging points: *Repeated partitioning* of the point set into a hierarchy:

 - *space-driven*: Partition the current space into two/four/… *equal-sized* halves, and split the point set accordingly,

 - *data-driven*: Partition the point set into two or more subsets in a *balanced* way.
Example of space-driven partitioning: Quadtree

Demo on Quadtree (plus some other structures):
http://www.cs.umd.edu/~brabec/quadtree/
Multidimensional query types

- **Exact-match** queries: All coordinates (attributes) are fixed in the query. Logarithmic complexity should be achieved.

- **Partial-match queries**: Only t out of total k coordinates are specified in the query. The rest may have arbitrary values. Lower bound for worst-case complexity: $\Omega(n^{1-t/k})$.

- **Range queries**: For each dimension, a range of values is specified. Exact match: range $= [c, c]$, partial-match: $(-\infty, \infty)$ for some coordinate.

- **Best-match queries**: Find the nearest neighbor of point/area, specified by the query conditions (exact or range).

- **Finding k nearest neighbors**: Generalization of the above.

- **Ranking query**: k nearest neighbors in the order of proximity.
Literature on multidimensional data structures

Mapping of a multidimensional space to one dimension

General idea:
- Define an (artificial) order for all possible points in space. This is called a space-filling curve.
- Based on the order numbers, a normal 1-dimensional B+-tree can be used for indexing the actual points occurring in the data set.

Assumption:
- The domain scale (resolution) should be discrete, e.g. integers. The domain should be finite, e.g. points in a hyper-rectangle.
- However, different dimensions may be from different domains.

Goal:
- The defined order should maintain the original proximity of neighbouring points in space, in order to minimize the number of (disk) accesses in retrieval.
Optimal mapping to one dimension: Hilbert curve

Order numbers of points somewhat complicated to calculate
Mapping to one dimension: Z-order

- **Tentative idea:** make a *concatenation* of coordinate values, and build a 1-dimensional B⁺-tree index on the combined values. Problem: Supports well the ‘leftmost’ dimensions but not others.

- **More symmetric solution:** *Shuffle* (= interleave) the binary representations of coordinates. Denote
 - number of dimensions = k
 - range of coordinate values = $0..2^d-1$.
 - arbitrary point $P = \langle P_0, \ldots, P_{k-1} \rangle$, or in binary form:
 $$\langle \langle P_{00}, P_{01}, \ldots, P_{0,d-1} \rangle, \langle P_{10}, P_{11}, \ldots, P_{1,d-1} \rangle, \ldots, P_{k-1,0}, P_{k,1}, \ldots, P_{k-1,d-1} \rangle$$
 - shuffled binary representation:
 $$\langle P_{00}, P_{10}, \ldots, P_{k-1,0}, P_{01}, P_{11}, \ldots, P_{k-1,1}, \ldots, P_{0,d-1}, P_{1,d-1}, \ldots, P_{k-1,d-1} \rangle$$

- **Z-order:** If P and Q are points in k-dimensional space, then
 $$P \preceq Z Q \text{ if and only if } \text{shuffle}(P) \preceq \text{shuffle}(Q)$$

- **Data structure:** Normal 1-dimensional B⁺-tree, storing shuffled representations of points.
Example of z-order on a 2D plane (k=2, d=3)
Z-order features

Background:
- Z-order defines a *space-filling curve*, where most jumps are local.

Generalizations:
- Different merging orders can be defined for domains that are not equal-sized.
 Bit mapping tables are then needed for shuffle and unshuffle.

Operations on the z-order structure:
- Exact match, insert, delete and modify are simple (one-dimensional) B⁺-tree operations (using the shuffled key).
- More demanding: *Range search*
Range search from z-order

- Generate k-dimensional search regions (SR), by repeated partitioning of the whole space.
- The set of satisfying points is the query region (QR).
- The idea is to cover QR with one or more SRs.
- Both QR and SR are k-dimensional (hyper-)rectangles.
- During partitioning, a new SR may lie in three positions with respect to QR:
 1. SR is outside QR; SR contains no points that would satisfy the query. SR can be discarded.
 2. SR is inside QR; all points in SR satisfy the query. The related tuples are retrieved, unshuffled, and returned to the caller.
 3. SR and QR overlap; SR is split into two smaller SRs, which are handled recursively.
Notes on range search from z-ordered points

- Testing the positions of SR and QR with respect to each other does not require access to the data.
- For efficiency, we should aim at subregions, which constitute a contiguous subsequence of the z-order.

Rule:

On the i’th level of recursion, split SR evenly into two SRs along dimension (i mod k).

Notation for a region:

- lower:upper ranges for k dimensions: \(<l_0:u_0, ..., l_{k-1}:u_{k-1}>\).
- Splitting the SR on the i’th attribute means that we get two SRs:

\[
\begin{align*}
\text{SR}_{\text{left}} &= \text{left}(\text{SR}, i) = <l_0:u_0, ..., l_i: (l_i+u_i-1)/2, ..., l_{k-1}:u_{k-1}> \\
\text{SR}_{\text{right}} &= \text{right}(\text{SR}, i) = <l_0:u_0, ..., (l_i+u_i+1)/2 : u_i, ..., l_{k-1}:u_{k-1}>
\end{align*}
\]
Range search algorithm for z-order

\textit{RangeSearch}(QR, SR, level)

-- Initially SR is the whole \(k \)-dimensional domain space, and level = 0.

\textbf{if} SR \(\cap \) QR is empty \textbf{then} do nothing

\textbf{else if} SR \(\subseteq \) QR \textbf{then}

\quad SR_{lo} := <l_0, \ldots, l_{k-1}> \text{ of SR} \quad \text{-- bottom-left corner}

\quad SR_{hi} := <u_0, \ldots, u_{k-1}> \text{ of SR} \quad \text{-- top-right corner}

\quad \textbf{read} tuple \(t \) \textbf{where} key \(\geq \) \text{shuffle}(SR_{lo})

\quad \textbf{while} \(t \leq \) \text{shuffle}(SR_{hi}) \textbf{do}

\quad \quad \textbf{report} unshuffle(\(t \))

\quad \quad \textbf{read} the next \(t \) \quad \text{-- in z-order}

\quad \textbf{else}

\quad \quad \text{RangeSearch}(QR, \text{left}(SR, \text{attr}[\text{level mod } k]), \text{level}+1)

\quad \text{RangeSearch}(QR, \text{right}(SR, \text{attr}[\text{level mod } k]), \text{level}+1)

\textbf{end}
Example range search from z-order

- \(k = 2, \ d = 3, \ \text{QR} = <1:3, \ 0:4> \)
- Points: \{\((0,3), \ (1,4), \ (2,1), \ (2,3), \ (2,6), \ (4,7), \ (6,2), \ (6,5), \ (7,5) \}\}

Note:
The thick lines enclose the successful SRs; the actual bounds for the SR-intervals are integer-valued.
Development of SRs in the range search $<1:3, 0:4>$

```
<0:7, 0:7>
  /    \
<0:3, 0:7>  <4:7, 0:7>  (outside)
  /        \
<0:3, 0:3>  <0:3, 4:7>  <0:1, 4:7>  <2:3, 4:7>
        /    \
<0:1, 0:3>  <2:3, 0:3>  <0:1, 4:5>  <0:1, 6:7>  <2:3, 4:5>  <2:3, 6:7>  (outside)  \
        /    \
<0:1, 0:1>  <0:1, 2:3>  <0:1, 4:5>  <0:0, 4:5>  <2:2, 4:5>  <3:3, 4:5>  (outside)  \
          /    \
<0:0, 0:1>  <0:0, 2:3> <0:0, 4:5> <2:2, 4:4> <3:3, 4:4> <3:3, 5:5> (outside) (inside)  \
            /    \
<1:1, 0:1> <1:1, 2:3> <1:1, 4:5> <1:1, 4:4> <1:1, 4:5> <2:2, 5:5> (inside) (inside)  \
               /    \
<1:1, 4:4> <1:1, 4:5> <2:2, 5:5> <3:3, 5:5> (inside) (outside)
```
Observations from z-order range search

- The points within each SR are consecutive in z-order, and therefore accessible sequentially, starting e.g. from the bottom-left corner of the block.
- On the border of QR, a number of small SRs are created. Most of them do not cause a page fault, because they are close in z-order. However, internal processing may be considerable.
- The recursion stack can be compressed to $2 \times$ tuple length in bits based on the fact that higher-level SRs may be deduced from a given SR).
- Possible modification: Inspect a superset of QR, by stopping at a level that is suitable for effective disk processing.

Generalizations:
- *Universal B-tree* (UB-tree): Variable-depth representation
- *Pyramid tree*: Optimized for range queries from high-dim. data
- The idea can be extended also to *spatial* objects.
kd-tree

- k-dimensional tree, but structurally binary
- Balanced partitioning of the point set (*not* the space)
- Recursive splitting according to a single dimension at a time
- Splitting dimension is varied in a cyclic manner
- Originally a main-memory structure
- Not dynamic maintenance of balance (only in building)

Building a kd-tree from a given point set:
1. Find the *median* of the first dimension.
2. Split the point set into two subsets by using the median as a *discriminator* value.
3. Store the discriminator in the root
4. Build subtrees recursively, but using different dimensions in cyclic order when determining the discriminator.

Complexity: $O(kN \log N)$ for N points.
Versions of kd-tree (compare with B-tree vs. B⁺-tree)

- *Homogeneous*: Discriminator *points* are stored in internal nodes
- *Non-homogeneous*: Discriminator *values* are stored in internal nodes, but all points (including the discriminator points) are stored in the leaves.

Example: Non-homogeneous kd-tree.
Searching from a (non-homogeneous) kd-tree

(a) *Exact-match query:*
 - Follow a path down from the root: On the i'th level compare the $(i \mod k)$'th coordinate c with the discriminator d of the node.
 - If $c \leq d$ then go to the left subtree, otherwise to the right.
 - Continue to the leaf. If all coordinates match, return the point.

Balanced kd-trees: search cost $O(\log N)$
Randomly built kd-trees: expected search cost $O(\log N)$

(b) *Partial-match query:*
 - If the i'th dimension is not specified in the query, we must search both subtrees on levels j where $(j \mod k) = i$.
 - Otherwise, branch as in (a).

If $t \ (<k)$ out of k dimensions are fixed, then the cost is approximately $O(t \ N^{1-t/k})$.
Searching from a (non-homogeneous) kd-tree (cont.)

(c) Range query:

- On the \(i\)’th level, if the query range of coordinate \((i \mod k)\) is totally below the discriminator \(d\), then go to the left subtree; if it is totally above \(d\), then go to the right.
- Otherwise both subtrees must be searched.

Worst-case complexity: \(O(N^{1-1/k} + F)\), where \(F\) is the result size.

Average-case complexity: \(O(\log N + F)\).
Updating the kd-tree

Insert and delete:

- Generalize the normal binary search tree operations correspondingly.
- **But**: The balance is not maintained dynamically.
- The shape of the tree depends on the insertion order
- *Reorganization* may be needed from time to time.
- *Balanced* kd-trees exist, but complicated

Demo on kd-tree (plus some other structures):
Adapting the kd-tree to external memory: sketch

- Group neighboring leaves into data pages.
- Group neighboring internal nodes into index pages.
- Dynamic management of pages should be solved.
Adapting the kd-tree to external memory: kd-B-tree

- kd-B-tree was one of the first (1981) multidimensional structures tailored to external memory; more sophisticated tree structures were developed later.

- Structure: Multiway tree, consisting of two kinds of nodes:

 1. Region pages:
 - Internal nodes that comprise the actual index (directory)
 - A region is a rectangular block in k-dimensional space
 - A region page represents the partition of the block into subregions.
 - Splitting into subregions is done similar to the k-d-tree.

 2. Point pages:
 - Leaf nodes that contain actual points
 (k coordinate values per point)
Schematic example of a kd-B-tree:
Searching from a kd-B-tree

- **Exact-match queries:**
 - Start from the root page.
 - Within the page-related local kd-tree, branch repeatedly to the correct region.
 - Follow the child pointer related to the obtained region
 - Repeat branching in the subtree contained in the child page
 - When reaching a leaf, check the point matches

- **Partial-match and range queries:**
 - As above, but branch to all sub-regions intersecting the query region.
Inserting a new point in a kd-B-tree

- Insert the point into the correct leaf page, if it fits
- If a leaf overflows, it is split according to the ‘next’ dimension, using the median value as the discriminator. The split information is propagated to the parent page.
- If the parent overflows, it is split into two. A new split plane is chosen to separate the sub-regions of the new pages.
- A sub-region may appear in three positions:
 - Left to the cut plane: Move the sub-region to the ‘left’ page.
 - Right to the cut plane: Move the sub-region to the ‘right’ page.
 - The plane cuts the sub-region:
 - Split the sub-region into left and right halves, and propagate the split to the corresponding child node.
- Overflow may propagate up and down; not quite ‘incremental’ update.
Deletion of a point from a kd-B-tree

- First search, then delete
- Underflow: Page utilization drops below a threshold. *Problem*: A region can be merged only with its buddy, and the buddy region may have been partitioned into subregions and spread over multiple pages. *Solution*: This part of the tree must be rebuilt.
- Thus, deletion is not quite ‘incremental’, either.
- Storage utilization of kd-B-tree: Observed value about 60% ± 10% (decent).
Other multidimensional indexes for point data

LSD-tree
- Adaptation of kd-tree; part of the index kept in the main memory

R-tree (Rectangle tree)
- Based on a hierarchy of bounding boxes.
- Developed for spatial objects, used often for low-dim. points, too.

TV-tree (Telescope Vector tree)
- Nodes have a small varying set of active dimensions, which are used in distance calculations.

M-tree
- Index for points in a metric space: A distance function satisfies:
 (1) symmetry, (2) positivity, and (3) triangle inequality
- Developed especially for MMDBs: distance of objects based on multimedia features (shape, texture, color, patterns, sound, …)
‘Curse of dimensionality’

- General problem of high-dimensional spaces
- Non-intuitive effects: e.g. the volume grows exponentially with the dimensions
- Index regions tend to be highly overlapping
- Neighboring objects tend to share a large part of the coordinate values.
- Assuming uniformity of point distribution will lead to very ineffective indexing.
- Think of a 100-dimensional kd-tree: A balanced tree supporting one splitpoint per dimension has 100 levels and 2^{100} leaves!
- In the index, one should choose the coordinates, which are the best discriminators between subsets.