
SEAC-4 J.Teuhola 2014 71

4.4. Arithmetic coding

Advantages:
Reaches the entropy (within computing precision)
Superior to Huffman coding for small alphabets and
skewed distributions
Clean separation of modelling and coding
Suits well for adaptive one-pass compression
Computationally efficient

History:
Original ideas by Shannon and Elias
Actually discovered in 1976 (Pasco; Rissanen)

SEAC-4 J.Teuhola 2014 72

Arithmetic coding (cont.)

Characterization:
One codeword for the whole message
A kind of extreme case of extended Huffman (or Tunstall) coding
No codebook required
No clear correspondence between source symbols and code bits

Basic ideas:
Message is represented by a (small) interval in [0, 1)
Each successive symbol reduces the interval size
Interval size = product of symbol probabilities
Prefix-free messages result in disjoint intervals
Final code = any value from the interval
Decoding computes the same sequence of intervals

SEAC-4 J.Teuhola 2014 73

Arithmetic coding: Encoding of ”BADCAB”

A

B

C

D

A

0

1

D etc.

0.4

0.7

0.4

0.52

0.508

0.52

0.4

0.7

0.9

SEAC-4 J.Teuhola 2014 74

Encoding of ”BADCAB” with rescaled intervals

0.0 0.4 0.4 0.508 0.5164 0.5164

1.0 0.7 0.52 0.52 0.5188 0.51736

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

0.517072

0.516784

SEAC-4 J.Teuhola 2014 75

Algorithm: Arithmetic encoding

Input: Sequence x = xi, i=1, ..., n; probabilities p1, ..., pq of symbols 1, ..., q.
Output: Real value between [0, 1) that represents X.
begin

cum[0] := 0
for i := 1 to q do cum[i] := cum[i−1] + pi
lower := 0.0
upper := 1.0
for i := 1 to n do
begin range := upper − lower

upper := lower + range ∗ cum[xi]
lower := lower + range ∗ cum[xi−1]

end
return (lower + upper) / 2

end

SEAC-4 J.Teuhola 2014 76

Algorithm: Arithmetic decoding
Input: v: Encoded real value; n: number of symbols to be decoded;

probabilities p1, ..., pq of symbols 1, ..., q.
Output: Decoded sequence x.
begin

cum[1] := p1
for i := 2 to q do cum[i] := cum[i−1] + pi
lower := 0.0
upper := 1.0
for i := 1 to n do
begin range := upper − lower

z := (v − lower) / range
Find j such that cum[j−1] ≤ z < cum[j]
xi := j
upper := lower + range ∗ cum[j]
lower := lower + range ∗ cum[j−1]

end
return x = x1, ..., xn

end

SEAC-4 J.Teuhola 2014 77

Arithmetic coding (cont.)

Practical problems to be solved:
Arbitrary-precision real arithmetic
The whole message must be processed before the first
bit is transferred and decoded.
The decoder needs the length of the message

Representation of the final binary code:
Midpoint between lower and upper ends of the final
interval.
Sufficient number of significant bits, to make a distinction
from both lower and upper.
The code is prefix-free among prefix-free messages.

SEAC-4 J.Teuhola 2014 78

Example of code length selection

upper: 0.517072 = .10000100010111101...
midpoint: 0.516928 = .10000100010101010...
lower: 0.516784 = .10000100010010111...

midpoint ≠ lower and upper

range = 0.00028
log2(1/range) ≈11.76 bits

13 bits

SEAC-4 J.Teuhola 2014 79

Another source message

“ABCDABCABA”
Precise probabilities:
P(A) = 0.4, P(B) = 0.3, P(C) = 0.2, P(D) = 0.1

Final range length:
0.4 ⋅ 0.3 ⋅ 0.2 ⋅ 0.1 ⋅ 0.4 ⋅ 0.3 ⋅ 0.2 ⋅ 0.4 ⋅ 0.3 ⋅ 0.4 =
0.44 ⋅ 0.33 ⋅ 0.22 ⋅ 0.1 = 0.000002764

-log20.000002764 ≈ 18.46 = entropy

SEAC-4 J.Teuhola 2014 80

Arithmetic coding: Basic theorem

Theorem 4.2.
Let range = upper − lower be the final probability
interval in Algorithm 4.8. The binary
representation of mid = (upper + lower) / 2
truncated to l(x) = ⎡log2(1/range)⎤ + 1 bits is a
uniquely decodable code for message x among
prefix-free messages.

Proof: Skipped.

SEAC-4 J.Teuhola 2014 81

Optimality
Expected length of an n-symbol message x:

Bits per symbol:

∑=)()()(xlxPL n

H x
n

L
H x

n n

n n() ()() ()

≤ ≤ +
2

H S L H S
n

() ()≤ ≤ +
2

=
⎡

⎢
⎢

⎤

⎥
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥∑P x

P x
() log

()2

1
1

≤ +
⎡

⎣
⎢

⎤

⎦
⎥∑P x

P x
() log

()2

1
2

= + ∑∑ P x
P x

P x() log
()

()2

1
2

= +H S n()() 2

SEAC-4 J.Teuhola 2014 82

Ending problem

The above theorem holds only for prefix-free messages.
The ranges of a message and its prefix overlap, and
may result in the same code value.
How to distinguish between “VIRTA” and “VIRTANEN”?
Solutions:

Transmit the length of the message before the message itself:
“5VIRTA” and “8VIRTANEN”.
This is not good for online applications.

Use a special end-of-message symbol, with prob = 1/n where n
is an estimated length of the message.
Good solution unless n is totally wrong.

SEAC-4 J.Teuhola 2014 83

Arithmetic coding: Incremental transmission
Bits are sent as soon as they are known.
Decoder can start well before the encoder has finished.
The interval is scaled (zoomed) for each output bit:
Multiplication by 2 means shifting the binary point one
position to the right:

upper: 0.011010… 0.11010…
lower: 0.001101… 0.01101…

upper: 0.110100… 0.10100…
lower: 0.100011… 0.00011…

Note: The common bit also in midpoint value.

and transmit 0

and transmit 1

SEAC-4 J.Teuhola 2014 84

Arithmetic coding: Scaling situations

// Number p of pending bits initialized to 0

upper < 0.5:
transmit bit 0 (plus p pending 1’s)
lower := 2 ⋅ lower
upper := 2 ⋅ upper

lower > 0.5
transmit bit 1 (plus p pending 0’s)
lower := 2 ⋅ (lower − 0.5)
upper := 2 ⋅ (upper − 0.5)

lower > 0.25 and upper < 0.75:
Add one to the number p of pending bits
lower = 2 ⋅ (lower − 0.25)
upper = 2 ⋅ (upper − 0.25)

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

SEAC-4 J.Teuhola 2014 85

Decoder operation

Reads a sufficient number of bits to determine the first
symbol (unique interval of cumulative probabilities).
Imitates the encoder: performs the same scalings, after
the symbol is determined
Scalings drop the ‘used’ bits, and new ones are read in.
No pending bits.

SEAC-4 J.Teuhola 2014 86

Implementation with integer arithmetic

Use symbol frequencies instead of probabilities
Replace [0, 1) by [0, 2k−1)
Replace 0.5 by 2k-1−1
Replace 0.25 by 2k-2−1
Replace 0.75 by 3⋅2k-2−1

Formulas for computing the next interval:
upper := lower + (range ⋅ cum[symbol] / total_freq) − 1
lower := lower + (range ⋅ cum[symbol−1] / total_freq)

Avoidance of overflow: range ⋅ cum() < 2wordsize

Avoidance of underflow: range > total_frequency

SEAC-4 J.Teuhola 2014 87

Solution to avoiding over-/underflow

Due to scaling, range is always > 2k-2

Both overflow and underflow are avoided, if
total_freq < 2k-2, and 2k−2 ≤ w = machine word

Suggestion:
Present total_freq with max 14 bits, range with 16 bits

Formula for decoding a symbol x from a k-bit value:

cum x
value lower total freq

upper lower
cum x()

() _
()− ≤

− + ⋅ −
− +

⎢

⎣
⎢

⎥

⎦
⎥ <1

1 1
1

SEAC-4 J.Teuhola 2014 88

4.4.1. Adaptive arithmetic coding

Advantage of arithmetic coding:
Used probability distribution can be changed at any time,
but synchronously in the encoder and decoder.

Adaptation:
Maintain frequencies of symbols during the coding
Use the current frequencies in reducing the interval

Initial model; alternative choices:
All symbols have an initial frequency = 1.
Use a placeholder (NYT = Not Yet Transmitted) for the
unseen symbols, move symbols to active alphabet at the
first occurrence.

SEAC-4 J.Teuhola 2014 89

Basic idea of adaptive arithmetic coding

Alphabet: {A, B, C, D}
Message to be coded: “AABAAB …”

Intervals

Frequencies

A

B

C

D

{1,1,1,1}

A

B

C

D

{2,1,1,1}

A

B

C

D

{3,1,1,1}

A

B

C

D

{3,2,1,1}

A

B

C
D

{4,2,1,1}

Interval size 1 1/4 1/10 1/60 3/420

SEAC-4 J.Teuhola 2014 90

Adaptive arithmetic coding (cont.)

Biggest problem:
Maintenance of cumulative frequencies; simple vector
implementation has complexity O(q) for q symbols.

General solution:
Maintain partial sums in an explicit or implicit binary tree
structure.
Complexity is O(log2 q) for both search and update

SEAC-4 J.Teuhola 2014 91

Tree of partial sums

54 13 22 32 60 21 15 47

67 54 81 62

121 143

264

A B C D E F G H

SEAC-4 J.Teuhola 2014 92

Implicit tree of partial sums

f f1+f2 f3 f1+...+f4 f5 f5+f6 f7 f1+...+f8

f9 f9+f10 f11 f9+...+f12 f13 f13+f14 f15 f1+...+f16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Correct indices are obtained by bit-level operations.

SEAC-4 J.Teuhola 2014 93

4.4.2. Arithmetic coding for a binary alphabet

Observations:
Arithmetic coding works as well for any size of alphabet,
contrary to Huffman coding.
Binary alphabet is especially easy: No cumulative
probability table.

Applications:
Compression of black-and-white images
Any source, interpreted bitwise

Speed enhancement:
Avoid multiplications
Approximations cause additional redundancy

SEAC-4 J.Teuhola 2014 94

Arithmetic coding for binary alphabet (cont.)

Note:
Scaling operations need only multiplication by two,
implemented as shift-left.
Multiplications appearing in reducing the intervals are the
problem.

Convention:
MPS = More Probable Symbol
LPS = Less Probable Symbol
The correspondence to actual symbols may change
locally during the coding.

SEAC-4 J.Teuhola 2014 95

Skew coder (Langdon & Rissanen)

Idea: approximate the probability p of LPS by 1/2Q for
some integer Q > 0.
Choose LPS to be the first symbol of the alphabet
(can be done without restriction)
Calculating the new range:

For LPS: range ← range >> Q;
For MPS: range ← range − (range >> Q);

Approximation causes some redundancy
Average number of bits per symbol (p = exact prob):

pQ p Q− − −() log ()1 1
1

22

SEAC-4 J.Teuhola 2014 96

Solving the ‘breakpoint’ probability

Choose Q to be either r or r+1, where r = ⎣−log2p⎦
Equate the bit counts for rounding down and up:

)
2
11(log)ˆ1()1(ˆ)

2
11(log)ˆ1(ˆ 122 +−−−+=−−− rr prpprp

z
zp
+

=
1

ˆ z
r

r=
−
−

+

log
/
/2

11 1 2
1 1 2

where

which gives

p̂

SEAC-4 J.Teuhola 2014 97

Skew coder (cont.)

Probability approximation table:

Probability range Q Effective probability
0.3690 – 0.5000 1 0.5
0.1820 – 0.3690 2 0.25
0.0905 – 0.1820 3 0.125
0.0452 – 0.0905 4 0.0625
0.0226 – 0.0452 5 0.03125
0.0113 – 0.0226 6 0.015625

Proportional compression efficiency:

)2/11log()1(
)1log()1(log

QppQ
pppp

gthaverageLen
entropy

−−−−
−−−−

=

SEAC-4 J.Teuhola 2014 98

QM-coder
One of the methods for e.g. black-and-white images
Others:

Q-coder (predecessor of QM, tailored to hardware impl. / IBM)
MQ-coder (in JBIG2; Joint Bi-Level Image Compression Group)
M-coder (in H.264/AVC video compression standard)

Tuned Markov model
(finite-state automaton) for
adapting probabilities.

Interval setting:
MPS is the ‘first’ symbol
Maintain lower and range:

range ⋅ p

range⋅(1-p)

lower+range

lower+range⋅(1-p)

lower

SEAC-4 J.Teuhola 2014 99

QM-coder (cont.)

Key ideas:
Operate within interval [0, 1.5)
Rescale when range < 0.75
Approximate range by 1 in multiplications

range ⋅ p ≈ p
range ⋅ (1−p) ≈ range − p

No pending bits, but a ‘carry’ bit can propagate to the
output bits, which must be buffered. Unlimited
propagation is prevented by ‘stuffing’ 0-bits after bytes
containing only 1’s (small redundancy).
Practical implementation is done using integers
within [0, 65536).

SEAC-4 J.Teuhola 2014 100

4.4.3. Practical problems with arithmetic coding
Not partially decodable nor indexable:
Start decoding always from the beginning even to recover
a small section in the middle.
Vulnerable: Bit errors result in a totally scrambled message
Not self-synchronizable, contrary to Huffman code

Solution for static distributions: Arithmetic Block Coding
Applies the idea of arithmetic coding within machine words
Restarts a new coding loop when the word bits are ‘used’.
Resembles Tunstall code, but no explicit codebook.
Fast, because avoids the scalings and bit-level operations.
Non-optimal code length, but rather close

