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4.4. Arithmetic coding

Advantages:
Reaches the entropy (within computing precision)
Superior to Huffman coding for small alphabets and 
skewed distributions
Clean separation of modelling and coding
Suits well for adaptive one-pass compression
Computationally efficient

History:
Original ideas by Shannon and Elias
Actually discovered in 1976 (Pasco; Rissanen)
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Arithmetic coding (cont.)

Characterization:
One codeword for the whole message
A kind of extreme case of extended Huffman (or Tunstall) coding 
No codebook required
No clear correspondence between source symbols and code bits

Basic ideas:
Message is represented by a (small) interval in [0, 1)
Each successive symbol reduces the interval size
Interval size = product of symbol probabilities
Prefix-free messages result in disjoint intervals
Final code = any value from the interval
Decoding computes the same sequence of intervals
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Arithmetic coding: Encoding of ”BADCAB”
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Encoding of ”BADCAB” with rescaled intervals
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Algorithm: Arithmetic encoding

Input: Sequence x = xi, i=1, ..., n; probabilities p1, ..., pq of symbols 1, ..., q.
Output: Real value between [0, 1) that represents X.
begin

cum[0] := 0
for i := 1 to q do cum[i] := cum[i−1] + pi
lower := 0.0
upper := 1.0
for i := 1 to n do
begin range := upper − lower

upper := lower + range ∗ cum[xi]
lower := lower + range ∗ cum[xi−1]

end
return (lower + upper) / 2

end



SEAC-4     J.Teuhola 2014 76

Algorithm: Arithmetic decoding
Input: v: Encoded real value; n: number of symbols to be decoded;

probabilities p1, ..., pq of symbols 1, ..., q.
Output: Decoded sequence x.
begin

cum[1] := p1
for i := 2 to q do cum[i] := cum[i−1] + pi
lower := 0.0
upper := 1.0
for i := 1 to n do
begin range := upper − lower

z := (v − lower) / range
Find j such that cum[j−1] ≤ z < cum[j]
xi := j
upper := lower + range ∗ cum[j]
lower := lower + range ∗ cum[j−1]

end
return x = x1, ..., xn

end
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Arithmetic coding (cont.)

Practical problems to be solved:
Arbitrary-precision real arithmetic
The whole message must be processed before the first 
bit is transferred and decoded.
The decoder needs the length of the message

Representation of the final binary code:
Midpoint between lower and upper ends of the final 
interval.
Sufficient number of significant bits, to make a distinction 
from both lower and upper.
The code is prefix-free among prefix-free messages.
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Example of code length selection

upper: 0.517072 = .10000100010111101...
midpoint: 0.516928 = .10000100010101010...
lower: 0.516784 = .10000100010010111...

midpoint ≠ lower and upper

range = 0.00028
log2(1/range) ≈11.76 bits

13 bits
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Another source message

“ABCDABCABA”
Precise probabilities:
P(A) = 0.4,  P(B) = 0.3,  P(C) = 0.2,  P(D) = 0.1

Final range length:
0.4 ⋅ 0.3 ⋅ 0.2 ⋅ 0.1 ⋅ 0.4 ⋅ 0.3 ⋅ 0.2 ⋅ 0.4 ⋅ 0.3 ⋅ 0.4 =
0.44 ⋅ 0.33 ⋅ 0.22 ⋅ 0.1 = 0.000002764

-log20.000002764 ≈ 18.46 = entropy
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Arithmetic coding: Basic theorem

Theorem 4.2.
Let range = upper − lower be the final probability 
interval in Algorithm 4.8. The binary 
representation of mid = (upper + lower) / 2 
truncated to l(x) = ⎡log2(1/range)⎤ + 1 bits is a 
uniquely decodable code for message x among 
prefix-free messages.

Proof: Skipped.
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Optimality
Expected length of an n-symbol message x:

Bits per symbol:
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Ending problem

The above theorem holds only for prefix-free messages.
The ranges of a message and its prefix overlap, and 
may result in the same code value.
How to distinguish between “VIRTA” and “VIRTANEN”?
Solutions:

Transmit the length of the message before the message itself:
“5VIRTA” and “8VIRTANEN”.
This is not good for online applications.

Use a special end-of-message symbol, with prob = 1/n where n
is an estimated length of the message.
Good solution unless n is totally wrong.
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Arithmetic coding: Incremental transmission
Bits are sent as soon as they are known.
Decoder can start well before the encoder has finished.
The interval is scaled (zoomed) for each output bit:
Multiplication by 2 means shifting the binary point one 
position to the right:

upper: 0.011010… 0.11010…
lower: 0.001101… 0.01101…

upper: 0.110100… 0.10100…
lower: 0.100011… 0.00011…

Note: The common bit also in midpoint value.

and transmit 0

and transmit 1
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Arithmetic coding: Scaling situations

// Number p of pending bits initialized to 0

upper < 0.5:
transmit bit 0 (plus p pending 1’s)
lower := 2 ⋅ lower
upper := 2 ⋅ upper

lower > 0.5
transmit bit 1 (plus p pending 0’s)
lower := 2 ⋅ (lower − 0.5)
upper := 2 ⋅ (upper − 0.5)

lower > 0.25 and upper < 0.75:
Add one to the number p of pending bits
lower = 2 ⋅ (lower − 0.25)
upper = 2 ⋅ (upper − 0.25)
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Decoder operation

Reads a sufficient number of bits to determine the first 
symbol (unique interval of cumulative probabilities).
Imitates the encoder: performs the same scalings, after 
the symbol is determined
Scalings drop the ‘used’ bits, and new ones are read in.
No pending bits.
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Implementation with integer arithmetic

Use symbol frequencies instead of probabilities
Replace [0, 1) by [0, 2k−1)
Replace 0.5 by 2k-1−1
Replace 0.25 by 2k-2−1
Replace 0.75 by 3⋅2k-2−1

Formulas for computing the next interval:
upper := lower + (range ⋅ cum[symbol] / total_freq) − 1
lower := lower + (range ⋅ cum[symbol−1] / total_freq)

Avoidance of overflow: range ⋅ cum() < 2wordsize

Avoidance of underflow: range > total_frequency
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Solution to avoiding over-/underflow

Due to scaling, range is always > 2k-2

Both overflow and underflow are avoided, if
total_freq < 2k-2, and 2k−2 ≤ w = machine word

Suggestion:
Present total_freq with max 14 bits, range with 16 bits

Formula for decoding a symbol x from a k-bit value:

cum x
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cum x( )

( ) _
( )− ≤

− + ⋅ −
− +

⎢

⎣
⎢

⎥

⎦
⎥ <1

1 1
1



SEAC-4     J.Teuhola 2014 88

4.4.1. Adaptive arithmetic coding

Advantage of arithmetic coding:
Used probability distribution can be changed at any time, 
but synchronously in the encoder and decoder.

Adaptation:
Maintain frequencies of symbols during the coding
Use the current frequencies in reducing the interval

Initial model; alternative choices:
All symbols have an initial frequency = 1.
Use a placeholder (NYT = Not Yet Transmitted) for the 
unseen symbols, move symbols to active alphabet at the 
first occurrence.
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Basic idea of adaptive arithmetic coding

Alphabet: {A, B, C, D}
Message to be coded: “AABAAB …”

Intervals

Frequencies

A

B

C

D

{1,1,1,1}

A

B

C

D

{2,1,1,1}

A

B

C

D

{3,1,1,1}

A

B

C

D

{3,2,1,1}

A

B

C
D

{4,2,1,1}

Interval size 1 1/4 1/10 1/60 3/420
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Adaptive arithmetic coding (cont.)

Biggest problem:
Maintenance of cumulative frequencies; simple vector 
implementation has complexity O(q) for q symbols.

General solution:
Maintain partial sums in an explicit or implicit binary tree 
structure.
Complexity is O(log2 q) for both search and update
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Tree of partial sums

54 13 22 32 60 21 15 47

67 54 81 62

121 143

264

A B C D E F G H
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Implicit tree of partial sums

f f1+f2        f3       f1+...+f4       f5 f5+f6 f7 f1+...+f8

f9       f9+f10       f11      f9+...+f12     f13       f13+f14     f15   f1+...+f16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Correct indices are obtained by bit-level operations.
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4.4.2. Arithmetic coding for a binary alphabet

Observations:
Arithmetic coding works as well for any size of alphabet, 
contrary to Huffman coding.
Binary alphabet is especially easy: No cumulative 
probability table.

Applications:
Compression of black-and-white images
Any source, interpreted bitwise

Speed enhancement:
Avoid multiplications
Approximations cause additional redundancy
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Arithmetic coding for binary alphabet (cont.)

Note:
Scaling operations need only multiplication by two, 
implemented as shift-left.
Multiplications appearing in reducing the intervals are the 
problem.

Convention:
MPS = More Probable Symbol
LPS = Less Probable Symbol
The correspondence to actual symbols may change 
locally during the coding.



SEAC-4     J.Teuhola 2014 95

Skew coder (Langdon & Rissanen)

Idea: approximate the probability p of LPS by 1/2Q for 
some integer Q > 0.
Choose LPS to be the first symbol of the alphabet
(can be done without restriction)
Calculating the new range:

For LPS:  range ← range >> Q;
For MPS: range ← range − (range >> Q);

Approximation causes some redundancy
Average number of bits per symbol (p = exact prob):

pQ p Q− − −( ) log ( )1 1
1

22
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Solving the ‘breakpoint’ probability 

Choose Q to be either r or r+1, where r = ⎣−log2p⎦
Equate the bit counts for rounding down and up:
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Skew coder (cont.)

Probability approximation table:

Probability range Q Effective probability
0.3690 – 0.5000 1 0.5
0.1820 – 0.3690 2 0.25
0.0905 – 0.1820 3 0.125
0.0452 – 0.0905 4 0.0625
0.0226 – 0.0452 5 0.03125
0.0113 – 0.0226 6 0.015625

Proportional compression efficiency:

)2/11log()1(
)1log()1(log

QppQ
pppp

gthaverageLen
entropy

−−−−
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QM-coder
One of the methods for e.g. black-and-white images
Others:

Q-coder (predecessor of QM, tailored to hardware impl. / IBM)
MQ-coder (in JBIG2; Joint Bi-Level Image Compression Group)
M-coder (in H.264/AVC video compression standard)

Tuned Markov model
(finite-state automaton) for
adapting probabilities.

Interval setting:
MPS is the ‘first’ symbol
Maintain lower and range:

range ⋅ p

range⋅(1-p)

lower+range

lower+range⋅(1-p)

lower
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QM-coder (cont.)

Key ideas:
Operate within interval [0, 1.5)
Rescale when range < 0.75
Approximate range by 1 in multiplications

range ⋅ p ≈ p
range ⋅ (1−p) ≈ range − p

No pending bits, but a ‘carry’ bit can propagate to the 
output bits, which must be buffered. Unlimited 
propagation is prevented by ‘stuffing’ 0-bits after bytes 
containing only 1’s (small redundancy).
Practical implementation is done using integers
within [0, 65536).
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4.4.3. Practical problems with arithmetic coding
Not partially decodable nor indexable:
Start decoding always from the beginning even to recover 
a small section in the middle.
Vulnerable: Bit errors result in a totally scrambled message
Not self-synchronizable, contrary to Huffman code

Solution for static distributions: Arithmetic Block Coding
Applies the idea of arithmetic coding within machine words
Restarts a new coding loop when the word bits are ‘used’.
Resembles Tunstall code, but no explicit codebook.
Fast, because avoids the scalings and bit-level operations.
Non-optimal code length, but rather close


