
SEAC-7 J.Teuhola 2016 182

7. Introduction to image compression

 Image data is fundamentally different from text.

 Scale of measurement is different:

 Pixels: interval / ratio scale:

Neighboring pixels tend to have numerically close colour values

 Characters: nominal scale:

ASCII values of neighbouring characters do not correlate

numerically

 Dedicated compression methods are required.

SEAC-7 J.Teuhola 2016 183

Image data types

 Bi-level images

 1 bit per pixel, 2 colors (black and white)

 Grey-scale images

 8 bits per pixel, 256 colors (shades of grey)

 Color palette images

 8 bits per pixel, 256 colors (representative subset)

 True color images

 3x8 bits per pixel,  16.8 million colors

SEAC-7 J.Teuhola 2016 184

Main types of image compression

 Lossless:

 The original image can be returned precisely

 Seldom needed for photographs

 Exception: x-rays

 Lossy:

 Only an approximation of the original image can be returned.

 Takes advantage of the limitations of the human visual system.

 Enables much higher compression ratios than the lossless

approach (close to 10 x).

SEAC-7 J.Teuhola 2016 185

7.1. Lossless compression of bi-level images

Applications:

 Telefax

 Engineering drawings

 Document imaging (scanning and digital archiving)

Basis of compression:

 Different proportions of black and white pixels.

 Clustering of same-coloured pixels (black/white areas)

 Pixel rows are considered bit vectors;

compressions methods are chosen accordingly.

SEAC-7 J.Teuhola 2016 186

Run-length coding

 ‘Run’ = sequence of instances of the same bit

 Runs of 0’s and 1’s alternate

 0’s (white) usually dominate (-> ink on white paper)

 Two simple alternatives

 Number of zeroes ended by 1

000100001110000001001100… -> 3, 4, 0, 0, 6, 2, 0, …

 Alternating lengths of 0- and 1-runs; the first bit must be stored

000100001110000001001100… -> <0>, 3, 1, 4, 3, 6, 1, 2, 2, …

 The run-lengths are encoded by whatever method:

 Huffman

 Universal coding of numbers (gamma, delta, Fibonacci, …)

SEAC-7 J.Teuhola 2016 187

Interpolative coding:

Effective non-statistical coding of number sequences

 Developers: Moffat & Stuiver 1996 / 2000

 Suitable for any sequences of integers;
especially good if small values are clustered.

 Difference from universal coding of numbers:
the code values depend on neighbors

 Clearly better than encoding the numbers independently

Ideas:

 Transform the sequence into a cumulative sequence

 Encode the last number first, then the middle one,
then the middle of first/second half, recursively
(cf. binary search)

 At each step (except first), the lower and upper bounds are known,
determining the number of required bits, for semi-fixed-length code

 The bounds get closer when recursion proceeds.

SEAC-7 J.Teuhola 2016 188

Interpolative coding: Example

 Assume nonnegative integers

 Original sequence: 4, 2, 0, 3, 5, 1, 2, 3

 Cumulative sequence: 4, 6, 6, 9, 14, 15, 17, 20

 Steps:
1. Encode 20 with universal code, e.g. gamma code: 9 bits

2. Encode the middle element 9; it is between 0..20,
so use either log221=4 or log221=5 bits for it.

3. Encode the middle element 6 of the front part; it is between
0 and 9, so use either log210=3 or log210=4 bits for it.

4. Encode the middle element 15 of the rear part; it is between
9 and 20, so use either log212=3 or log212=4 bits for it.

5. Etc.

Result: 29 bits

Comparison: All numbers gamma-coded: 39 bits

SEAC-7 J.Teuhola 2016 189

Predictive run-length coding

 Predict each pixel on the basis of its processed

neighbours; result = success / failure.

 Transform each pixel: 0 = success,1 = failure

 Similar pixels are often clustered;

the proportion of 0’s grows and compression improves.

 Decoder repeats the prediction, and is able to do the

reverse transform

0 0

0 0?

1 0

0 0?

1 1

1 1?

0 0 0

SEAC-7 J.Teuhola 2016 190

Another simple bit-vector coding: Block coding

 Partition the bit vector into fixed-length blocks..

 Encode an all-zero block by 0, and others by <1, block>

 The flag bits can be block-coded recursively 

Hierarchical block coding

 110 101

 100 111 000 011 000 100

101 000 000 101 111 110 000 000 000 000 010 001 000 000 000 111 000 000

SEAC-7 J.Teuhola 2016 191

2-dimensional block coding

 Image is partitioned into rectangular boxes.

 Encode: white box = 0, non-white box = <1, box pixels>

 0 1 0100 1 1001 1 1111

 Recursion on flag bits creates a hierarchy

 Prediction transformation applicable also here:

 The whole picture must be transformed before block encoding.

 Reverse transform when block decoding is completed.

SEAC-7 J.Teuhola 2016 192

Hierarchical block coding

Example:

0110 0111 1111 1010 1110

0110 1110

1010
1

SEAC-7 J.Teuhola 2016 193

Telefax compression

 Group 1: Analog scheme, speed  6 min / A4 sheet.

 Group 2: Analog scheme, speed  3 min / A4 sheet

 Group 3: Digital scheme, 1- or 2-dim. compression,

speed  1 min / A4 sheet.

 Group 4: Digital scheme, 2-dim. compression,

speed  1 min / A4 sheet.

SEAC-7 J.Teuhola 2016 194

Telefax compression (cont.)

1-dimensional telefax scheme:

 Run-length coding

 Runs represented as length = 64  m + t

 Huffman-code m and t (separately for black and white)

2-dimensional telefax scheme:

 Pixel row encoded on the basis of the previous row.

 Max K1 rows by 2-dim., then 1-dim. compression

 K = 2 (normal), = 4 (high resolution), =  (group 4)

SEAC-7 J.Teuhola 2016 195

JBIG

 Joint Bi-Level Image Compression Group, 1993

 Standardized by ISO, CCITT and IEC.

 Effective method for bi-level compression.

 Context model: 7 or 10 neighbouring (already processed)
pixel values define the context for the current pixel.

 128 or 1024 different QM-coders for final coding.

 Sequential and progressive modes;
inter-level prediction in progressive mode

? ? ?

SEAC-7 J.Teuhola 2016 196

JBIG2

 Newer (2000), more effective version of JBIG

 Application areas: PDF documents, document images,

telefax, wireless transmission, printer spooling

 Divides the image into three types of regions:

 Symbol regions  text as image;

dictionary coding

 Halftone regions  halftone (raster)

image as a bi-level image;

dictionary coding

 Generic regions  Others;

predictive coding

TEXT

SEAC-7 J.Teuhola 2016 197

7.2. Lossless compression of grey-scale images

 Lossy is more common

 In critical applications (e.g. medical X-rays) lossless.

 Bi-level techniques can be applied to bit planes:

8 bits per pixel, 256 different grey levels,

 1. bit plane = most significant bits from all pixels

 2. bit plane = second most significant bits from all pixels

 Etc.

 Bit-plane compression can be improved by first

Gray-coding the pixel values

 Adjacent values differ by only one bit.

 Example for 3 bits: 000, 001, 011, 010, 110, 111, 101, 100

 The previous (encoded) bit plane can predict the next one.

SEAC-7 J.Teuhola 2016 198

Lossless JPEG

 JPEG offers both lossless and lossy options.

 Lossless JPEG applies a linear prediction model.

 Predicted grey level of a pixel is a linear function of 1, 2
or 3 neighbouring pixels (north, west, northwest)

 7 alternative prediction formulas (+ no-prediction option)

 1. X = N
2. X = W
3. X = NW
4. X = N + W – NW
5. X = W + (N - NW) / 2
6. X = N + (W - NW) / 2
7. X = (N + W) / 2

NW N

 W X

SEAC-7 J.Teuhola 2016 199

Lossless JPEG (cont.)

 Prediction errors are encoded with

 Huffman coding

 Arithmetic coding

 Some other (fast) non-optimal coding of numbers

(e.g. start-step-stop code).

 The decoder makes the same prediction and adds the

decoded error.

 The first pixel transmitted as such.

 The first pixel row can be predicted only from ‘west’.

 Compression ratio typically  50%.

SEAC-7 J.Teuhola 2016 200

Other methods for lossless image compression

CALIC (Context Adaptive Lossless Image Compression):

 Uses a larger (7 pixels) context for prediction

 Analyses the context to choose
the best prediction function

 Makes an initial prediction + refinement.

JPEG-LS:

 Initial prediction as median of N, NW and W.

 Refined prediction on the basis of statistics about the
errors that occurred earlier in the context of the same
<NE, N, NW, W> context.

 Better than old lossless JPEG, slightly worse than CALIC

NNE NN

 NW N NE

WW W X

SEAC-7 J.Teuhola 2016 201

7.3. Example of lossy image compression: JPEG

 Joint Photographic Experts Group 1986-92

 ISO standard 1994

 Both lossless (see above) and lossy modes

 Enables usually compression ratios of more than 10:1

 Lossy JPEG is the most used compression for

photographic color/grey-scale images.

 JPEG2000 gives better compression, but has not (yet)

surpassed the old JPEG in popularity

 Modelling phase is totally different from earlier

techniques.

SEAC-7 J.Teuhola 2016 202

Basis of JPEG: Discrete Cosine Transform (DCT)

 Transforms the image into frequency domain.

 The image is represented as a linear combination of

basis functions, which are variants of the cosine

functions, with various wavelengths (frequencies).

 Resembles Fourier transform, but the result is in the

domain of real numbers (not complex).

 The result of the transform consists of coefficients of the

transform.

 Discrete ( continuous) means that the transform can be

done as sums of a finite number of terms.

 Fast cosine transform takes time O(n log2n) for n pixels.

SEAC-7 J.Teuhola 2016 203

The magic formulas

Cosine transform:

Reverse transform:

where








 





 





1

0

1

0 2

)12(
cos

2

)12(
cos),()()(),(

N

x

N

y N

vy

N

ux
yxfvuvuC











 





 





1

0

1

0 2

)12(
cos

2

)12(
cos),()()(),(

N

u

N

v N

vy

N

ux
vuCvuyxf




N/2(u) = for u=0, and for u>0 N/1

SEAC-7 J.Teuhola 2016 204

Blocking

 JPEG processes the image in blocks of 8 x 8 pixels

 Reasons:

 Faster transform

 Regularities do not usually span far

 Blocks are coded almost independently

 Drawbacks:

 There are similarities across block boundaries which are not

taken advantage of.

 For high compression rates, so called blocking artifacts may

appear.

 Example of block transform:

 See: http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/JPEG

SEAC-7 J.Teuhola 2016 205

DCT basis functions in graphical form

SEAC-7 J.Teuhola 2016 206

The next step: Quantification

 The lossy step

 Division of coefficients by suitable integers & rounding

 Reduces precision

 Smaller loss for low-frequency components:

 More important visually

 Smaller divisors for top-left area, higher for the bottom-right area

 Quantization tables are standardized for different

qualities

 Note: division of 8 x 8 matrices element-by-element

 Example of quantization:

See: http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/JPEG

SEAC-7 J.Teuhola 2016 207

The next step: Linearization of the matrix

 So-called zig-zag order:

SEAC-7 J.Teuhola 2016 208

Encoding of the vector

 Observation: Most of the values zero

 The non-zero values are clustered to the left

 The first value: ‘DC-coefficient’

 Compute difference from the first value of the neighbour block.

 Huffman-code the differences

 Other 63 (‘AC-coefficients’)

 Tailored run-length coding

SEAC-7 J.Teuhola 2016 209

Encoding of 63 AC-coefficients

(1) Run-lengths and element sizes as pairs:

 (a) 160 normal pairs:

 Number of zeroes before the next non-zero element (0..15)

 Number of significant bits in the non-zero element (1..10)

 (b) Two special pairs:

 <0, 0> that represents EOB = end-of-block

 <15, 0> that represents a sequence of plain zeroes

Total size of the alphabet: 162

Apply Huffman code using default code tables.

(2) Non-zero element values:

 Encode as base-2 numbers using the given bit count.

SEAC-7 J.Teuhola 2016 210

JPEG decoding

Reverse process:

1. Decode Huffman

2. Recover the quantized matrix:

 Set the DC-coefficient to top-left

 Recover the zig-zag order from the linear order (63 coefficients)

3. Multiply by quantization matrix (elementwise);

this produces roughly the original DCT-coefficients.

4. Perform the inverse DCT transform.

5. Collect the blocks into a recovered image.

SEAC-7 J.Teuhola 2016 211

Example of blocking artifacts

Compression ratio 7:1 Compression ratio 30:1

SEAC-7 J.Teuhola 2016 212

Compression of color images

 Three components, e.g. RGB (Red-Green-Blue)

 High correlation between component images:
Separate compression of each does not pay

 Solution: transformation to a different color model,
where the components are less correlated

 YUV (YIQ):
 Luminance channel: The most important to the human visual

system

 Two chrominance channels: Less important, and therefore
usually subsampled 2:1 in both dimensions ( pixel count
reduces to ¼).

 Separate encoding of component images with different
coding parameters

SEAC-7 J.Teuhola 2016 213

Color model conversions

 RGB  YUV:
 Y = 0.299R + 0.587G + 0.114B

 U = 0.492(B – Y)

 V = 0.877(R – Y)

 YUV  RGB

 R = Y + 1.140V

 G = Y – 0.395U – 0.581V

 B = Y + 2.033U

SEAC-7 J.Teuhola 2016 214

Converting a color image (Lena) to YUV

SEAC-7 J.Teuhola 2016 215

Summary of image compression

 Photographic images need different modeling methods,
compared to text, graphics, or bi-level images.

 Modeling should decorrelate the image by well-chosen
transformations

 The loss of information should be hidden from the user.

 When using Huffman coding for numeric data, the
alphabet should be carefully selected to avoid
dependencies

 When using Huffman, predefined (static) tables are
preferable in image compression; there can be several
alternative tables for different image types and
compression qualities.

