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4. Source Encoding Methods 

 Called also 

 entropy coders, because the methods try to get 

close to the entropy (i.e. lower bound of compression). 

 statistical coders, because the methods assume the probability 

distribution of the source symbols to be given (either statically or 

dynamically) in the source model. 
 

 The alphabet can be finite or infinite 
 

 Sample methods: 

 Shannon-Fano coding 

 Huffman coding (with variations) 

 Tunstall coding 

 Arithmetic coding (with variations) 
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4.1. Shannon-Fano code 

 First idea: Code length li = log2 pi. 

 This satisfies: H(S)  L  H(S) + 1 

 Always possible, because Kraft inequality is satisfied: 

 

 

Problems: 

 The decoding tree may not be complete (succinct). 

 How to assign codewords? 

 Shannon-Fano method solves these problems by 

balanced top-down decomposition of the alphabet. 
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Example 

 p1 = p2 = 0.3:  code lengths: log20.3 = 2 

 p3 = p4 = p5 = p6 = 0.1:  code lengths: log20.1 = 4 

 E.g. 

 

 

 

s1 s2 

s3 s4 s5 s6 

? 

0 

0 0 

0 

0 

1 

1 
1 

1 

1 1 0 



SEAC-4     J.Teuhola 2016 41 

Algorithm 4.1. 

Shannon-Fano codebook generation 

Input: Alphabet S = {s1, ..., sq }, probability distribution 
           P = {p1, ..., pq }, where pi  pi+1. 

Output: Decoding tree for S. 

begin 

 Create a root vertex r and associate alphabet S with it. 

 If S has only one symbol then return r. 

 Find  j ( 0 and  q) such that  and          are 
the closest. 

 Find decoding trees r1 and r2 for the sub-alphabets 
   {s1, ..., sj} and {sj+1, ..., sq} recursively and set them to   
   subtrees of r, with labels 0 and 1. 

 Return the tree rooted by r. 

end 

 

j

i ip
1  

q

ji ip
1



SEAC-4     J.Teuhola 2016 42 

  

 

 

(5) (4) 

0 0 1 1 

{c,d} 

 0.2 

{c,d,e,f}: 0.4 
1 

{a,b}: 0.6 

{a,b,c,d,e,f}: 1.0 

0 

b: 0.3 

0 1 

a: 0.3 {e,f}: 0.2 {c,d}: 0.2 

0 1 

{c,d,e,f}: 0.4 
1 

{a,b}: 0.6 

{a,b,c,d,e,f}: 1.0 

0 

b:0.3 

0 1 

a:0.3 

{e,f}: 0.2 

0 1 

c:0.1  d:0.1  e:0.1  f:0.1 

(3) (2) (1) 

{a,b,c,d,e,f}: 1.0 

{a,b}: 0.6 {c,d,e,f}: 0.4 

{a,b,c,d,e,f}: 1.0 

0 1 
{a,b}: 0.6 

{c,d,e,f}: 0.4 

{a,b,c,d,e,f}: 1.0 

0 1 

a: 0.3 b: 0.3 

0 1 



SEAC-4     J.Teuhola 2016 43 

4.2. Huffman code 

 Best-known source compression method. 

 Builds the tree bottom-up (contrary to Shannon-Fano). 

 

Principles: 

 Two least probable symbols appear as lowest-level 

leaves in the tree, and differ only at the last bit. 

 A pair of symbols si and sj can be considered a meta-

symbol with probability pi+pi. 

 Pairwise combining is repeated q-1 times. 
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Algorithm 4.2. Huffman codebook generation 

Input: Alphabet S = {s1, ..., sq}, probability distribution 
           P = {p1, ..., pq}, where pi  pi+1. 

Output: Decoding tree for S. 

begin 

 Initialize forest F to contain a one-node tree Ti for each symbol si 
and set weight(Ti) = pi. 

 while |F| > 1 do 

 begin 

  Let X and Y be two trees with the lowest weights. 

  Create a binary tree Z, with X and Y as subtrees 
       (equipped with labels 0 and 1). 
 Set weight(Z) = weight(X) + weight(Y). 

  Add Z to forest F and remove X and Y from it. 

 end 

 Return the single remaining tree of forest F. 

end 
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  Example of Huffman codebook generation 
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Properties of Huffman code 

 Produces an optimal codebook for the alphabet, 

assuming that the symbols are independent. 

 The average code length reaches the lower bound 

(entropy) if for all i: pi = 2-k where k is an integer. 

 Generally: H(S)  L  H(S)+p1+0.086, where p1 is the 

largest symbol probability. 

 The codebook is not unique: 

(1) Equal probabilities can be combined using any 

      tie-break rule. 

(2) Bits 0 and 1 can be assigned to subtrees in either  

      order. 
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Implementation alternatives of Huffman code 

1. Maintain a min-heap, ordered by weight; 

the smallest can be extracted from the root. 

The complexity of building the tree: O(q), 

inserting a metasymbol: O(log q); altogether O(q log q). 
 

2. Keep the uncombined symbols in a list sorted by 

weight, and maintain a queue of metasymbols. 

 The two smallest weights can be found from these two 

sequences 

 The new (combined) metasymbol has weight higher than 

the earlier ones. 

 Complexity: O(q), if the alphabet is already sorted by 

probability. 
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Special distributions for Huffman code 

 All symbols equally probable, q = 2k, where k is integer: 

block code. 

 All symbols equally probable, no k such that q = 2k: 

shortened block code. 

 Sum of two smallest probabilities > largest: 

(shortened) block code. 

 Geometric (≈ negative exponential) distribution: pi = c·2-i : 

codewords 0, 10, 110 , ..., 111..10, 111..11 (cf. unary 

code). 

 Zipf distribution: pi  c/i (symbols si sorted by probability): 

compresses to about 5 bits per character for normal text. 
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Transmission of the codebook 

 Drawback of (static) Huffman coding: 

The codebook must be stored/transmitted to the decoder 

 Alternatives: 

 Shape of the tree (2q-1 bits) plus leaf symbols from left to right 

(q log2 q bits). 

 Lengths of codewords in alphabetic order (using e.g. universal 

coding of integers); worst case O(q log2 q) bits. 

 Counts of different lengths, plus symbols in probability order; 

space complexity also O(q log2 q) bits. 

 



SEAC-4     J.Teuhola 2016 50 

Extended Huffman code 

Huffman coding does not work well for: 

 Small alphabet 

 Skew distribution 

 Entropy close to 0, average code length yet  1. 

 

Solution: 

 Extend the alphabet to S(n): 

Take n-grams of symbols as units in coding. 

 Effect: larger alphabet (qn), decreases the largest 

probability. 
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Extended Huffman code (cont.) 

 Information theory gives: 
H(S(n))  L(n)  H(S(n)) + 1 
 

 Counted per original symbol: 
 H(S(n))/n  L  (H(S(n)) + 1)/n 

 which gives (by independence assumption): 

   H(S)  L  H(S) + 1/n 
 

 Thus: Average codeword length approaches the entropy. 

 But: The alphabet size grows exponentially, most of the 
extended symbols do not appear in messages for large n. 

 Goal: No explicit tree; codes determined on the fly. 
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Adaptive Huffman coding 

 Normal Huffman coding: Two phases, static tree 
 

 Adaptive compression: The model (& probability 

distribution) changes after each symbol; encoder and 

decoder change their models intact. 
 

 Naive adaptation: Build a new Huffman tree after each 

transmitted symbol, using the current frequencies. 
 

 Observation: The structure of the tree changes rather 

seldom during the evolution of frequencies. 
 

 Goal: Determine conditions for changing the tree, and 

the technique to do it. 
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Adaptive Huffman coding (cont.) 

 Sibling property: Each node, except the root, has a 

sibling (i.e. the binary tree is complete). 

 

 The tree nodes can be listed in non-decreasing order of 

weight so that each node is adjacent in the list to its 

sibling. 

 

 Theorem. A binary tree having weights associated with 

its nodes, as defined above, is a Huffman tree if and only 

if it has the sibling property. 

Proof. Skipped. 
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Implementation of Adaptive Huffman coding 

 Start from a balanced tree with weight = 1 for each leaf; 
the weight of an internal node = sum of child weights. 

 Maintain a threaded list of tree nodes in increasing order of 
weight. 

 Nodes of equal weight in the list form a (virtual) block. 

 After transmitting the next symbol, add one to the weights 
of nodes on the path from the correct leaf up to the root. 

 Increasing a node weight by one may violate the 
increasing order within the list. 

 Swapping of violating node with the rightmost node in the 
same block will recover the order, and maintains the 
sibling property. Addition of frequencies continues from the 
new parent. 
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Example of Huffman tree evolution 

 Increase the weight of ’a’ from 1 to 2: 
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 Example step in adaptive Huffman coding 
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Notes about Adaptive Huffman coding 

Modification: 

 Start from an empty alphabet, and a tree with only a 

placeholder. 

 At the first occurrence of a symbol, transmit the 

placeholder code and symbol as such, insert it to the 

tree by splitting the placeholder node. 

 

Further notes: 

 Complexity proportional to the number of output bits. 

 Compression power close to static Huffman code. 

 Not very flexible in context-dependent modelling. 
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Canonical Huffman coding 

 Goal: effective decoding 

 Based on lengths of codewords, determined by the 
normal Huffman algorithm. 

 Chooses one of the many possible bit assignments for 
codewords, e.g. 

 

 Symbol    Freq. Code I    Code II Code III 

    a  10 000     111  000 

    b         11 001     110  001  

    c         12 100     011  010  

    d         13 101     010  011 

    e         22 01     10  10 

    f         23 11     00  11 
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Canonical Huffman coding (cont.) 

Definition. A Huffman code is any prefix-free assignment 
of codewords, the lengths of which are equal to the 
depths of corresponding symbols in a Huffman tree. 
 

Ordering of codeword values: 

 From longest to shortest 

 Same-length codewords have successive code values 

 k-bit prefix is smaller than any k-bit codeword, i.e. 
lexicographic order 
 

Decoding needs: 

 The first code value for each length. 

 The symbol related to the i’th value within the same-
length codewords. 
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Algorithm 4.3.: 

Assignment of canonical Huffman codewords 

Input:    Length li  for each symbol si of the alphabet, 

   determined by the Huffman method. 
 

Output: Integer values of codewords assigned to 

   symbols, plus the order number of each symbol 

   within same-length symbols. 
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  begin 

 Set maxlength := Max{li} 

 for l := 1 to maxlength do 

  Set countl[l] := 0 

 for i := 1 to q do 

  Set countl[li] := countl[li] + 1 

 Set firstcode[maxlength] := 0 

 for l := maxlength  1 downto 1 do 

  Set firstcode[l] := (firstcode[l+1] + countl[l+1] ) / 2 

 for l := 1 to maxlength do 

  Set nextcode[l] := firstcode[l] 

 for i := 1 to q do 

 begin 

  Set codeword[i] := nextcode[li] 

  Set symbol[li, nextcode[li]  firstcode[li] ] := i 

  Set nextcode[li] := nextcode[li] + 1 

 end 

end 
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Algorithm 4.4. 

Decoding of canonical Huffman code. 

Input: The numerical value of the first code for each codeword 
  length, plus the symbol for each order number within the 
  set of codewords of equal length. 

Output: Decoded symbol. 

begin 

 Set value := readbit() 

 Set l := 1 

 while value < firstcode[l] do 

 begin Set value := 2  value + readbit() 

   Set l  := l + 1 

 end 

 return symbol[l, value  firstcode[l]] 

end 
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Properties of canonical Huffman code 

 

 Small amount of memory for the model in decoding: 

firstcode for each different length, and symbol table to 

look up the symbol related to a codeword value. 

 

 Decoding is very fast: no walking in the tree; 

only a very simple loop for each transmitted bit. 
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Tunstall coding 

 Goal: Variable-length substrings of the source are 

encoded to fixed-length codewords. 

 Assumption: Independence of symbols: probability of a 

string = product of included symbol probabilities. 

 Idea: For codeword length k, we try to find  2k 

approximately equi-probable blocks of symbols. 

 Restrictions: 

1. It must be possible to parse any message using the selected 

blocks. 

2. The set of blocks has the prefix-free property. 

 (1) and (2) together: The parsing trie must be a 

complete q’ary tree. 
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Tunstall’s ideas 

 Build a parsing trie where each parent-child relationship 

represents a symbol. 

 The symbols on the path from the root to a leaf represent 

the block which is assigned a codeword. 

 Each node has a weight = probability of related path. 

 The number of leaves must be  2k. 

 Build the trie top-down. 

 At each step, extend the leaf having the highest weight 

with q child nodes, one for each symbol. 
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Algorithm 4.5: Tunstall codebook generation 

 

 Input: Symbols si, i = 1, ..., q of the source alphabet S, 

  symbol probabilities pi , i = 1, ..., q, and the length 

  k of codewords to be allocated. 

 

 Output: Trie representing the substrings of the extended 

  alphabet, with codewords 0, ..., 2k-u attached to 

  the leaves (0  u  q  2), plus the decoding table. 
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begin 

 Initialize the trie with the root and q first-level 

      nodes, with labels s1, ... sq, and weights p1, ..., pq. 

 n := 2k-q -- Number of remaining codewords 

 while n  q  1 do 

  Find leaf x from the trie having the biggest weight among leaves. 

  Add q children to x, with labels s1, ... sq, and weights 
  weight(x)p1, ..., weight(x)pq. 

  Set n := n  q + 1 

 end 

 for each leaf li in preorder, i = 0, 1, 2, ... do 

  Assign codeword(li) := i (using k bits). 

  Denote path(li) = labels from the root to li. 

  Add pair (i, path(li)) to the decoding table. 

 end 

end 
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Tunstall code example: 

S = {A, B, C, D}, P = {0.5, 0.2, 0.2, 0.1}, k = 4,  2k=16 
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Properties of Tunstall code 

 Number of unused codewords: 

 

 

 

 

 Average number of bits per input symbol: 

 

 

 

 

 Not necessarily optimal 
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