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3. Information-Theoretic Foundations

m Founder: Claude Shannon, 1940’s

m Gives bounds for:
Ultimate data compression
Ultimate transmission rate of communication

m Measure of symbol information:
Degree of surprise / uncertainty

Number of yes/no questions (binary decisions) to find out the
correct symbol.

Depends on the probability p of the symbol.
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Choosing the information measure

m Requirements for information function I(p):
1(p) 20
1(p1p2) = 1(p1) + I(p2)
[(p) is continuous with p.

m The solution is essentially unique:
I(p) = —log p = log (1/p).

m Base of log =2 = The unit of information is bit.
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Examples

m Tossing a fair coin: P(heads) = P(tails) = %
Information measures for one toss:
Inf(heads) = Inf(tails) = -log,0.5 bits = 1 bit
Information measure for a 3-sequence:
Inf(<heads, tails, heads>) = -log,(¥2-¥2-Y2) bits = 3 bits.

Optimal coding: heads = 0, tails 2> 1

m An unfair coin: P(heads) = 1/8 and P(tails) = 7/8.
Inf(heads) = -log,(1/8) bits = 3 bits
Inf(tails) = -log,(7/8) bits ~ 0.193 bits
Inf(<tails, tails, tails>) = -log,(7/8)2 bits ~ 0.578 bits
Improving the coding requires grouping of tosses into blocks.
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Entropy

m Measures the average information of a symbol from
alphabet S having probability distribution P:

H(S) :Zq: pil(pi) :Zq: P; Iog{%j

m Noiseless source encoding theorem (C. Shannon):
Entropy H(S) gives a lower bound on the average code
length L for any instantaneously decodable system.
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Example case: Binary source

m Two symbols, e.g. S ={0, 1},
probabilities p, and p; = 1—p,.

1
= p,log, —+(1-p,)log, ——
m Entropy = P, 109, . (1-p,) gzl—po
mp,=05 p;=05 2>2H(S)=1
m p,=0.1, p;=0.9 > H(S)~0.469
a p,=0.01, p; = 0.99 > H(S) ~ 0.081

m The skewer the distribution, the smaller the entropy.

m Uniform distribution results in maximum entropy
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Example case: Predictive model

HELLO WOR ?

»

Already processed
‘context’

Next | Prob | Inf (bits) W eighted
char iInformation
L 0.95 | -log,0.95 0.95.0.074
~ 0.074 bits | = 0.070 bits
D 0.04 | -log,0.04 0.04 - 4.644
~ 4.644 bits | = 0.186 bits
M 0.01 | -log,0.01 0.01.-6.644
~ 6.644 bits | ~ 0.066 bits

W eighted sum ~ 0.322 bits
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Code redundancy

m Average redundancy of a code (per symbol):
L —H(S).

m Redundancy can be made = 0, if symbol probabilities are
negative powers of 2. (Note that —log,(27) =i )

m Generally possible: 1 1
log, F <I <log, F] +1

m Universal code: L <cl-H(S) +c2

m Asymptotically optimal code: c1=1
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Generalization: m-memory source

m Conditional information: |092(]/ P(s||sll,...,3I ))

m Conditional entropy for a given context:
1
H(S|Si1"”’3im):ZP(Silsul"' )Iogz( )]
.

m Global entropy over all contexts:

H(S) = ZZ P(sil,---,Sim)P(Silsil""’Sim)logz( P(s]| 1--- )]

S m+1

_ ZP(Sil’..-,Sim,Si)l()gg[ 1 ]

SEAC-3 J.Teuhola 2016 32



" A
About conditional sources

m Generalized Markov process:
Finite-state machine
For an m-memory source there are g™ states
Transitions correspond to symbols that follow the m-block
Transition probabilities are state-dependent

m Ergodic source: 0.8

System settles down to
a limiting probability distribution. e

Equilibrium state probabilities
can be inferred from 0.2 0.5 0.5
transition probabilities. ' '
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Solving the example entropy

0.8
P, =0.2p, +0.5p,
p,=0.8p, +0.5p, G 0
0.2 0.5 0.5

Solution: eigenvector
pO:O 385, p; =0.615

H (S Pr(j|i)l
(S)= IZ(;JZ_(;D. "(J]1)log 5 (”I)

1
0.210 —+O.8Io —~— )+ p.(05lo —+O.5Io —~)~0.893
Po g0.2 90.8) P g0.5 90.5)

Example application: compression of black-and —
white images (black and white areas highly clustered)
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Empirical observations

Shannon’s experimental value for the entropy of the
English language =~ 1 bit per character

Current text compressor efficiencies:
gzip =~ 2.5 — 3 bits per character
bzip2 ~ 2.5 bits per character
The best predictive methods =~ 2 bits per character

Improvements are still possible!
However, digital images, audio and video are more

Important data types from compression point of view.
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Other extensions of entropy

m Joint entropy, e.g. for two random variables X, Y:
H (X 1Y) — _Z px,y |0g2 px,y
X,y

m Relative entropy: difference of using g; instead of p.:

DKL(P ” Q) — Z P; I092 %

m Differential entropy for continuous probability distribution:
h(X)=- j f (x)log f (x)dx
X
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Kolmogorov complexity

Measure of message information = Length of the
shortest binary program for generating the message.

This is close to entropy H(S) for a sequence of symbols
drawn at random from a distribution that S has.

Can be much smaller than entropy for artificially
generated data: pseudo random numbers, fractals, ...

Problem: Kolmogorov complexity is not computable!

(Cf. Godel's incompleteness theorem and Turing
machine stopping problem).
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