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4.4. Arithmetic coding 

Advantages: 

 Reaches the entropy (within computing precision) 

 Superior to Huffman coding for small alphabets and 

skewed distributions 

 Clean separation of modelling and coding 

 Suits well for adaptive one-pass compression 

 Computationally efficient 

 

History: 

 Original ideas by Shannon and Elias 

 Actually discovered in 1976 (Pasco; Rissanen)  
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Arithmetic coding (cont.) 

Characterization: 

 One codeword for the whole message 

 A kind of extreme case of extended Huffman (or Tunstall) coding  

 No codebook required 

 No clear correspondence between source symbols and code bits 

 

Basic ideas: 

 Message is represented by a (small) interval in [0, 1) 

 Each successive symbol reduces the interval size 

 Interval size = product of symbol probabilities 

 Prefix-free messages result in disjoint intervals 

 Final code = any value from the interval 

 Decoder computes the same sequence of intervals 
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Arithmetic coding: Encoding of ”BADCAB” 
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Encoding of ”BADCAB” with rescaled intervals 

  

0.0 0.4 0.4 0.508 0.5164 0.5164 
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Algorithm: Arithmetic encoding 

Input: Sequence x = xi, i=1, ..., n; probabilities p1, ..., pq of symbols 1, ..., q. 

Output:  Real value between [0, 1) that represents X. 

begin 

 cum[0] := 0 

 for i := 1 to q do cum[i] := cum[i1] + pi 

 lower := 0.0 

 upper := 1.0 

 for i := 1 to n do 

 begin range := upper  lower 

  upper := lower + range  cum[xi] 

  lower := lower + range  cum[xi1] 

 end 

 return (lower + upper) / 2 

end 
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Algorithm: Arithmetic decoding 

Input: v: Encoded real value; n: number of symbols to be decoded; 
 probabilities p1, ..., pq of symbols 1, ..., q. 

Output: Decoded sequence x. 

begin 

 cum[1] := p1 

 for i := 2 to q do cum[i] := cum[i1] + pi 

 lower := 0.0 

 upper := 1.0 

 for i := 1 to n do 

 begin range := upper  lower 

  z := (v  lower) / range 

  Find j such that cum[j1]  z < cum[j] 

  xi := j 

  upper := lower + range  cum[j] 

  lower := lower + range  cum[j1] 

 end 

 return x = x1, ..., xn 

end 
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Arithmetic coding (cont.) 

Practical problems to be solved: 

 Arbitrary-precision real arithmetic 

 The whole message must be processed before the first 
bit is transferred and decoded. 

 The decoder needs the length of the message 
 

Representation of the final binary code: 

 Midpoint between lower and upper ends of the final 
interval. 

 Sufficient number of significant bits, to make a distinction 
from both lower and upper. 

 The code is prefix-free among prefix-free messages. 



SEAC-4     J.Teuhola 2016 78 

Example of code length selection 

 upper:  0.517072 = .10000100010111101... 

 midpoint: 0.516928 = .10000100010101010... 

 lower: 0.516784 = .10000100010010111... 

 

midpoint  lower and upper 

range = 0.00028 

log2(1/range) 11.76 bits 

13 bits 
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Another source message 

 “ABCDABCABA” 

 Precise probabilities: 

 P(A) = 0.4,  P(B) = 0.3,  P(C) = 0.2,  P(D) = 0.1 

 

 Final range length: 

 0.4  0.3  0.2  0.1  0.4  0.3  0.2  0.4  0.3  0.4 = 

 0.44  0.33  0.22  0.1 = 0.000002764 

 

-log20.000002764  18.46 = entropy 
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Arithmetic coding: Basic theorem 

 Theorem 4.2. 

Let range = upper  lower be the final probability 

interval in Algorithm 4.8. The binary 

representation of mid = (upper + lower) / 2 

truncated to l(x) = log2(1/range) + 1 bits is a 

uniquely decodable code for message x among 

prefix-free messages. 

 

 Proof: Skipped. 
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Optimality 

Expected length of an n-symbol message x: 
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Ending problem 

 The above theorem holds only for prefix-free messages. 

 The ranges of a message and its prefix overlap, and 

may result in the same code value. 

 How to distinguish between “VIRTA” and “VIRTANEN”? 

 Solutions: 
 

 Transmit the length of the message before the message itself: 

“5VIRTA” and “8VIRTANEN”. 

This is not good for online applications. 
 

 Use a special end-of-message symbol, with prob = 1/n where n 

is an estimated length of the message. 

Good solution unless n is totally wrong. 
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 Arithmetic coding: Incremental transmission 

 Bits are sent as soon as they are known. 

 Decoder can start well before the encoder has finished. 

 The interval is scaled (zoomed) for each output bit: 
Multiplication by 2 means shifting the binary point one 
position to the right: 
 
 upper:  0.011010…  0.11010… 
 lower:  0.001101…  0.01101… 

 

  upper:  0.110100…  0.10100… 
 lower:  0.100011…  0.00011… 

 

 Note: The common bit also in midpoint value. 

and transmit 0 

and transmit 1 
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Arithmetic coding: Scaling situations 

// Number p of pending bits initialized to 0 
 

upper < 0.5: 

 transmit bit 0 (plus p pending 1’s) 

 lower := 2  lower 

 upper := 2  upper 
 

lower > 0.5 

 transmit bit 1 (plus p pending 0’s) 

 lower := 2  (lower  0.5) 

 upper := 2  (upper  0.5) 
 

lower > 0.25 and upper < 0.75: 

 Add one to the number p of pending bits 

 lower = 2  (lower  0.25) 

 upper = 2  (upper  0.25) 
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 Decoder operation 

 Reads a sufficient number of bits to determine the first 

symbol (unique interval of cumulative probabilities). 

 Imitates the encoder: performs the same scalings, after 

the symbol is determined 

 Scalings drop the ‘used’ bits, and new ones are read in. 

 No pending bits. 
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 Implementation with integer arithmetic 

 Use symbol frequencies instead of probabilities 

 Replace [0, 1) by [0, 2k1) 

 Replace 0.5 by 2k-11 

 Replace 0.25 by 2k-21 

 Replace 0.75 by 32k-21 
 

Formulas for computing the next interval: 

 upper := lower + (range  cum[symbol] / total_freq)  1 

 lower := lower + (range  cum[symbol1] / total_freq) 
 

Avoidance of overflow: range  cum() < 2wordsize 
 

Avoidance of underflow: range > total_frequency 
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 Solution to avoiding over-/underflow 

 Due to scaling, range is always > 2k-2 

 Both overflow and underflow are avoided, if 

total_freq < 2k-2, and 2k2  w = machine word 

 

Suggestion: 

 Present total_freq with max 14 bits, range with 16 bits 

 

Formula for decoding a symbol x from a k-bit value: 

cum x
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4.4.1. Adaptive arithmetic coding 

Advantage of arithmetic coding: 

 Used probability distribution can be changed at any time, 

but synchronously in the encoder and decoder. 

Adaptation: 

 Maintain frequencies of symbols during the coding 

 Use the current frequencies in reducing the interval 

Initial model; alternative choices: 

 All symbols have an initial frequency = 1. 

 Use a placeholder (NYT = Not Yet Transmitted) for the 

unseen symbols, move symbols to active alphabet at the 

first occurrence. 
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Basic idea of adaptive arithmetic coding 

 Alphabet: {A, B, C, D} 

 Message to be coded: “AABAAB …” 

 

Intervals 

Frequencies 

A 

B 

C 

D 

{1,1,1,1} 

A 

B 

C 

D 

{2,1,1,1} 

A 

B 

C 

D 

{3,1,1,1} 

A 

B 

C 

D 

{3,2,1,1} 

A 

B 

C 

D 

{4,2,1,1} 

Interval size 1 1/4 1/10 1/60 3/420 
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Adaptive arithmetic coding (cont.) 

Biggest problem: 

 Maintenance of cumulative frequencies; simple vector 

implementation has complexity O(q) for q symbols. 

 

General solution: 

 Maintain partial sums in an explicit or implicit binary tree 

structure. 

 Complexity is O(log2 q) for both search and update 
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Tree of partial sums 

  

54 13 22 32 60 21 15 47 

67 54 
81 62 

121 143 

264 

A B C D E F G H 
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Implicit tree of partial sums 

  

   f          f1+f2        f3       f1+...+f4       f5    f5+f6    f7      f1+...+f8 

  f9       f9+f10       f11      f9+...+f12     f13       f13+f14     f15   f1+...+f16 

1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

Correct indices are obtained by bit-level operations. 
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4.4.2. Arithmetic coding for a binary alphabet 

Observations: 

 Arithmetic coding works as well for any size of alphabet, 
contrary to Huffman coding. 

 Binary alphabet is especially easy: No cumulative 
probability table. 
 

Applications: 

 Compression of black-and-white images 

 Any source, interpreted bitwise 
 

Speed enhancement: 

 Avoid multiplications 

 Approximations cause additional redundancy 
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Arithmetic coding for binary alphabet (cont.) 

Note: 

 Scaling operations need only multiplication by two, 

implemented as shift-left. 

 Multiplications appearing in reducing the intervals are the 

problem. 

 

Convention: 

 MPS = More Probable Symbol 

 LPS = Less Probable Symbol 

 The correspondence to actual symbols may change 

locally during the coding. 
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Skew coder (Langdon & Rissanen) 

 Idea: approximate the probability p of LPS by 1/2Q for 

some integer Q > 0. 

 Choose LPS to be the first symbol of the alphabet 

(can be done without restriction) 

 Calculating the new range: 

 For LPS:  range  range >> Q; 

 For MPS: range  range  (range >> Q); 

 Approximation causes some redundancy 

 Average number of bits per symbol (p = exact prob): 

 
pQ p Q  ( ) log ( )1 1

1

22
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Solving the ‘breakpoint’ probability  

 Choose Q to be either r or r+1, where r = log2p 

 Equate the bit counts for rounding down and up: 
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Skew coder (cont.) 

Probability approximation table: 
 

 Probability range   Q Effective probability 

0.3690 – 0.5000    1 0.5 

0.1820 – 0.3690    2 0.25 

0.0905 – 0.1820    3 0.125 

0.0452 – 0.0905    4 0.0625 

0.0226 – 0.0452    5 0.03125 

0.0113 – 0.0226    6 0.015625 
 

Proportional compression efficiency: 

 

)2/11log()1(

)1log()1(log
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QM-coder 

 One of the methods for e.g. black-and-white images 

 Others: 

 Q-coder (predecessor of QM, tailored to hardware impl. / IBM) 

 MQ-coder (in JBIG2; Joint Bi-Level Image Compression Group) 

 M-coder (in H.264/AVC video compression standard) 

 Tuned Markov model 

(finite-state automaton) for 

adapting probabilities. 

 

Interval setting: 

 MPS is the ‘first’ symbol 

 Maintain lower and range: 

 

range  p 

range(1-p) 

lower+range 

lower+range(1-p) 

lower 
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QM-coder (cont.) 

Key ideas: 

 Operate within interval [0, 1.5) 

 Rescale when range < 0.75 

 Approximate range by 1 in multiplications 
       range  p  p 
       range  (1p)  range  p 

 No pending bits, but a ‘carry’ bit can propagate to the 
output bits, which must be buffered. Unlimited 
propagation is prevented by ‘stuffing’ 0-bits after bytes 
containing only 1’s (small redundancy). 

 Practical implementation is done using integers 
within [0, 65536). 
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4.4.3. Practical problems with arithmetic coding 

 Not partially decodable nor indexable: 

Start decoding always from the beginning even to recover 

a small section in the middle. 

 Vulnerable: Bit errors result in a totally scrambled message 

 Not self-synchronizable, contrary to Huffman code 
 

Solution for static distributions: Arithmetic Block Coding 

 Applies the idea of arithmetic coding within machine words 

 Restarts a new coding loop when the word bits are ‘used’. 

 Resembles Tunstall code, but no explicit codebook. 

 Fast, because avoids the scalings and bit-level operations. 

 Non-optimal code length, but rather close 


