" J
5.3. Prediction by partial match (PPM)
Cleary & Witten, 1984

m Problem with the previous method:

If prediction fails for the maximal context, information
from shorter contexts is not used.

The firstidea:
m ‘Blend’ the predictions of different-length contexts:

P(X) = Zk:WO P. (x)

0=-1

SEAC-5 J.Teuhola 2016 125

Example of backward trie with statistics
[6,2,1,2]

P

P

A D J
[7Z,O<]\[2,0, 0] [1,0,0,0] [2,0,‘0,0]
D J P A

A
[1,OI,O,1] [0,0,0,l][O,|Z,0,0][2,0[0,0] ﬁ0,0{
J

A A P
[1,0,0,1] [0,2,0,0] [2,0,0,0] [1,0,0,0] [1,0,0,0]

Blending exarqpl?s:l s 19 11 1 1
“..ADAP”: 5 3t5 fits s+s p+5 7~0.366
‘... PAD|A”: %%

SEAC-5 J.Teuhola 2016 126

" J
Prediction by partial match (cont.)

m Practical implementation:

m Find the longest matching context and calculate the
probability estimate:

. Freq(X_---X)
 Freq(x_,..%_;)

P (X Xy - 1)

m If this is zero, then encode an escape symbol.

m Actually, the probability P(X|...) must be slightly
decreased, in order to make room for the escape.

m Repeat escaping until prediction succeeds or
order = —1.

SEAC-5 J.Teuhola 2016 127

" J
Prediction by partial match (cont.)

m Exclusion principle:

m \When calculating the probability, exclude from the
alphabet the symbols predicted by longer contexts:

Freq(xi—j"'xi—lxi)

Pex(xi|xi—j"'xi—1) —

Z Freq(X;_;...X;S|Freq(X_;_,...%_,8) = 0)

seS

m Similarly compute Cumg,(X; | X ... Xi_1).
m Again, the probability P, (X|...) must be slightly
decreased, in order to make room for the escape

SEAC-5 J.Teuhola 2016 128

" J
Example of exclusion

m Model basis: “JAPADAPADAA’
m Coding situation: “... APA|P”

m 1. attempt:

Context “APA”

Zero frequency for “APAP”

Encode escape; new alphabet: {A,D,J,P} - {D} ={A, J, P}
m 2. attempt:

Context “PA”

Zero frequency for “PAP”

Encode escape; new alphabet = {A,J,P} - {D}={A, J, P}
m 3. attempt:

Context “A”

Freq("AP”) = 2, out of 5

Encode('P’)

SEAC-5 J.Teuhola 2016 129

" A
PPM: Determining the escape probability

PPMA: Escape has always frequency 1.

1

Prob, (esc) =
A (850) Freq(X,_;..%_4) +1

Freq(xi—j X1 %)

Prob, (X | X ...x ,)=
A OG X0 Xir) Freq(x,_;...X, ;) +1

SEAC-5 J.Teuhola 2016 130

"
PPM: Determining the escape probability (cont.)

PPMB: Escape probability is proportional to the observed
escape frequency:

dif
Freq(x_;...Xi_;)

Prob; (esc) =

where

dif =#{s|s e Succ(x,_;...x_;)

A symbol is not predicted until it has occurred twice:

Freq(x,_.
Probg (X; | Xi_;.--X_1) = L
Freq(X,_;..X.;)

X X)) —1

SEAC-5 J.Teuhola 2016 131

"
PPM: Determining the escape probability (cont.)

PPMC: Same as PPMB, but prediction can be used
already after the first occurrence:

dif
Freq(x_;...x_,) + dif

Prob.. (esc) =

Freq (Xi—j X1 %)

Prob. (X | X._...X_,) =
C(|| i—j |—1) Freq(X- _ -Xi—1)+dif

i—j""

dif =#{s|seSucc(X;_;...X;_;)

SEAC-5 J.Teuhola 2016 132

" J
Other possible tailorings of PPMC

Update exclusion:

m Increase only the successor frequency for the context
really used in prediction.
This improves the compression efficiency and speed.

Restrict the frequencies:
m E.g. to at most 255 (8 bits), and rescale when needed.
m This makes the method more adaptive.

Lazy exclusion:

m Exclusion not applied at escapes.

m Decreases compression efficiency by about 5%.
m Increases speed by about 50%.

m A feature in PPMC’

SEAC-5 J.Teuhola 2016 133

" A
PPMC: About the implementation

Data structures for contexts and frequencies:

m Backward tries, Successors attached as a list/vector to
each context node.

m Forward tries: Successors are children of context nodes.

Vine (suffix) pointers:

m Make forward tries much more efficient.

m Escape to a shorter context: Follow the vine pointer.
m Moving to the next current context: Follow the vine pointer.

Efficiency of PPMC:
m One of the best methods (= 2 bits/symbol for English)
m Relatively slow.

SEAC-5 J.Teuhola 2016 134

Schematic example of vine (suffix) pointers, for source

message message “cacbcaabca’”, max context 2

a(l)f

b (1)

C (1)

ol [eq
T

Encoding of successor ‘b’:
(1) Take the vine pointer from b-c-a to c-a.

(2) No successor ‘b’; escape and take vine pointer to’a’

(3) Encode succ. ‘b’, having freq 1

SEAC-5 J.Teuhola 2016

o

e

135

Newer versions of PPM

PPMD (Howard, 1993):
m At escape, add %2 to escape and symbol probabilities
m A new formula for escape probability:

P(escape) =u/ (2n)

where u = number of symbols in the context,
n = context frequency.

SEAC-5 J.Teuhola 2016 136

" J
Newer versions of PPM (cont.)

PPM* (Cleary, Teahan, Witten, 1995):
m Unbounded context length

m Start prediction from the longest deterministic context, if
such exists, otherwise from the longest stored context
(deterministic = only one symbol has occurred as
successor, but possibly several times)

m Data structure:
- trie with deterministic paths to leaves,
- pointers to corresponding places in the message,
- linked list to currently active contexts.

m Escapes as in PPMC; no update exclusion.

SEAC-5 J.Teuhola 2016 137

"
Newer versions of PPM (cont.)

PPMZ (Bloom, 1998):.
m Unbounded contexts only in deterministic cases.

m Prediction starts from the context having the biggest
Prob(Most probable symbol)

m Escape probability derived from
statistics on context
context order
escape count
successful matches

m Complicated and slow; ‘ultimate’ PPM-method.

SEAC-5 J.Teuhola 2016 138

" A
5.4. Burrows-Wheeler transform

Totally different techniqgue from others
Effect is close to PPM*

Correct functioning is not obvious
Compression efficiency is not obvious
Good speed is not obvious

Transform technique:
m Sort all rotations of the message

m Transform result = sequence L of the last symbols of
the sorted rotations, plus the order number of the
original message within the sorted order.

SEAC-5 J.Teuhola 2016 139

Burrows-Wheeler: Example sorting

© 00 NO O &~ WOWDNPF O

=
o

MISSISSIPPI
IMISSISSIPP
PIMISSISSIP
PPIMISSISSI
IPPIMISSISS
SIPPIMISSIS
SSIPPIMISSI
ISSIPPIMISS
SISSIPPIMIS
SSISSIPPIMI
ISSISSIPPIM

SORT
>

Matrix M
IMISSISSIPP
IPPIMISSISS
ISSIPPIMISS
|ISSISSIPPIM
MISSISSIPPI
PIMISSISSIP
PPIMISSISSI
SIPPIMISSIS
SISSIPPIMIS
SSIPPIMISSI
SSISSIPPIMI

LAST
COLUM

Index of original message = 4
SEAC-5 J.Teuhola 2016

vZ

- - 0O nw - T T 0O onm o

140

" A
Burrows-Wheeler: Reverse transformation

m The sequence F of the first symbols of the sorted
rotations can be recovered by sorting L.
[Each column contains exactly the same characters in
different orders.]

m The LJ[i]F[i] pairs can be linked so that the original
message can be recovered in forward or backward
order.

m In the example:
MI, IS, SS, SI, IS, SS, S, IP, PP, PI

m The task resembles connecting domino pieces,
but how to find the correct order of linking?

SEAC-5 J.Teuhola 2016 141

Burrows-Wheeler transform: Basic observations

Index L F Imagine that “...” corresponds
to the rest of the sorted rotations.

The first 4 rows correspond to sorted
order of “I...", prefixed by the last symbols
of the rotations = symbols preceding “I” in
the original sequence.

The rows with L = 1’ are also in sorted
order, because the first symbol is the
same, and the tails are sorted.

©Oooo~~NO Ul WNPEO

The “I’-charactersin columns L and F
correspond to each other in the same order.
This forms the connections between pairs.

—_— — VW -T - 0L0nTT

DWW gV — — — —

[N
o

SEAC-5 J.Teuhola 2016 142

Numbering of corresponding symbols

Index L T
0) .
Note. The numbering
1 In column T can be
g computed in linear time
4 0
5
6 1
7
8
9 2
10 3

SEAC-5 J.Teuhola 2016 143

Burrows-Wheeler: Reverse transformation

Start

Index L F T
o (P
SNONVON
2 S 8 |
3 M | 4
-~ 4 M _
g P g Decoding order:
6~ (1) P 1 "...SIPPI”
7 SS9 ‘
8 S S 10
9 | S 2
10 | S 3

SEAC-5 J.Teuhola 2016 144

Alternative: forward linking

Index L F T

Start _
Decoding order:

‘MIS...”

© 0O ~NO O~ WNPRELO
- — V0N -T-0L0nTT

D000 o oED- - -

[

SEAC-5 J.Teuhola 2016 145

Burrows-Wheeler: Implementation of sorting

Create a vector of pointers (sometimes called
suffix array) to the message symbols.

Sort the vector of pointers.

Comparison-based methods: A pointer is ‘less’ than
another, if the strings from the pointed indexes ahead
are lexicographically in this order.

Alternative: radix sort in forward order. First partition
according to the first symbols of rotations, then sub-
partition according to the second, etc. After a few levels,
finalize with some simple technique.

Another alternative: suffix tree.

SEAC-5 J.Teuhola 2016 146

" J
Burrows-Wheeler: Data structure for sorting

Suffix array
1 2 3 4 5 6 7 g8 9 10 11

10| 7411|109 |8|6|3|5]|2

MISSISSIPPI

012 345¢06 728910

The example pointer refers to rotation *ISSIPPIMISS”,
which is the third in alphabetic order of rotations.

SEAC-5 J.Teuhola 2016 147

" J
Properties of the last column of sorted rotations

m Observation: The symbols are predecessors (in the
original message) of sorted, I.e. very similar strings.

m Contexts of the symbols in the last column are the whole
rest parts of the message, n-1 symbols each.

m Compared to PPM, contexts are longer and reverses
(mirrors) of the PPM contexts.

m The last column typically consists of long sequences of
the same symbol, enabling effective compression.

SEAC-5 J.Teuhola 2016 148

Example fragment of transformed English text

tSSUrsSSSSSSSSUUSSSSSISSSUUULSSITMESSSSUUSSSSSSSIMMMSITStSSSS
ssslliimrmpeeeeewvtttt
tttgmgtimmtltrgttttmtttigmmmrrrppwmeemtttttttttmttmiiutvtrvvvniicvrrir
uimmmecctucriittvvevivtivntsvrrevtttirnnnntvvuunincrivtvttircmmvvmve
reirviv
cccccccccccccccccceccccccchnhnhnHHHHHHHHHHHHHHHHHHHHH
HHHHHhhCC cccccccuuuiimreimmmr cfcch cc
MGGGGcccecmmm

cfiicucciunumeuuumitucmucninunncii vt
NVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVWVVVYVQ
Nrrerrerrerrrrrrrerrererrereeereers

SSSSSSSSCSSSSSSSSSSSSSSANXXXI XSXXXXSSXXXXXXXXXXXXSITrrmmmh
ch chhhhmclhjj h

CCCCCCcccccccecemmmmmmmmmmmmmmmmmmhc hcece h
mc mcchchecmhhhhhhchhecCC

SEAC-5 J.Teuhola 2016 149

" J
Encoding of the last column of sorted rotations

m Good approach by experience:
Maintain a list of symbols in the alphabet

For each symbol, encode the order number of the symbol in
the list, and move the symbol to the front of the list.

m Most of the numbers (typically 60-70%) will be zeroes,
and also the rest are quite small.

m Statistical methods, like arithmetic coding, can be
applied.

m Run-length coding of zeroes improves the compression.

m The distribution of the order numbers is so skew that
even unary coding gives good results.

SEAC-5 J.Teuhola 2016 150

Example of move-to-front technique for encoding the
last column into small numbers

Index [P |S |S |[M [l P | S |S |I I

0 I P |S |S |M |I P |l S |S |I

1 M | P [P |S |[M |I P | I S
2 P (M |I I P IS M M P [P |P
3 S |[S M |M |I P IS |IS MM M
Order |12 |3 |0 |3 |3 (3 |1 (3 |0 (1 |0
no

SEAC-5 J.Teuhola 2016

151

" A
Burrows-Wheeler: some issues

On-line compression?
m In its basic form, the method is off-line (multi-phase).

m By doing the compression blockwise, the method can be
applied to on-line situations.

Performance:

m Better compression than with PPMC or gzip;
worse than PPMZ.

m Order of magnitude faster than PPMZ;
slightly slower than gzip.

m Practical implementation: bzip2 (Unix / Linux)

SEAC-5 J.Teuhola 2016 152

