
SEAC-4 J.Teuhola 2016 71

4.4. Arithmetic coding

Advantages:

 Reaches the entropy (within computing precision)

 Superior to Huffman coding for small alphabets and

skewed distributions

 Clean separation of modelling and coding

 Suits well for adaptive one-pass compression

 Computationally efficient

History:

 Original ideas by Shannon and Elias

 Actually discovered in 1976 (Pasco; Rissanen)

SEAC-4 J.Teuhola 2016 72

Arithmetic coding (cont.)

Characterization:

 One codeword for the whole message

 A kind of extreme case of extended Huffman (or Tunstall) coding

 No codebook required

 No clear correspondence between source symbols and code bits

Basic ideas:

 Message is represented by a (small) interval in [0, 1)

 Each successive symbol reduces the interval size

 Interval size = product of symbol probabilities

 Prefix-free messages result in disjoint intervals

 Final code = any value from the interval

 Decoder computes the same sequence of intervals

SEAC-4 J.Teuhola 2016 73

Arithmetic coding: Encoding of ”BADCAB”

A

B

C

D

A

0

1

D etc.

0.4

0.7

0.4

0.52

0.508

0.52

0.4

0.7

0.9

SEAC-4 J.Teuhola 2016 74

Encoding of ”BADCAB” with rescaled intervals

0.0 0.4 0.4 0.508 0.5164 0.5164

1.0 0.7 0.52 0.52 0.5188 0.51736

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

0.517072

0.516784

SEAC-4 J.Teuhola 2016 75

Algorithm: Arithmetic encoding

Input: Sequence x = xi, i=1, ..., n; probabilities p1, ..., pq of symbols 1, ..., q.

Output: Real value between [0, 1) that represents X.

begin

 cum[0] := 0

 for i := 1 to q do cum[i] := cum[i1] + pi

 lower := 0.0

 upper := 1.0

 for i := 1 to n do

 begin range := upper  lower

 upper := lower + range  cum[xi]

 lower := lower + range  cum[xi1]

 end

 return (lower + upper) / 2

end

SEAC-4 J.Teuhola 2016 76

Algorithm: Arithmetic decoding

Input: v: Encoded real value; n: number of symbols to be decoded;
 probabilities p1, ..., pq of symbols 1, ..., q.

Output: Decoded sequence x.

begin

 cum[1] := p1

 for i := 2 to q do cum[i] := cum[i1] + pi

 lower := 0.0

 upper := 1.0

 for i := 1 to n do

 begin range := upper  lower

 z := (v  lower) / range

 Find j such that cum[j1]  z < cum[j]

 xi := j

 upper := lower + range  cum[j]

 lower := lower + range  cum[j1]

 end

 return x = x1, ..., xn

end

SEAC-4 J.Teuhola 2016 77

Arithmetic coding (cont.)

Practical problems to be solved:

 Arbitrary-precision real arithmetic

 The whole message must be processed before the first
bit is transferred and decoded.

 The decoder needs the length of the message

Representation of the final binary code:

 Midpoint between lower and upper ends of the final
interval.

 Sufficient number of significant bits, to make a distinction
from both lower and upper.

 The code is prefix-free among prefix-free messages.

SEAC-4 J.Teuhola 2016 78

Example of code length selection

 upper: 0.517072 = .10000100010111101...

 midpoint: 0.516928 = .10000100010101010...

 lower: 0.516784 = .10000100010010111...

midpoint  lower and upper

range = 0.00028

log2(1/range) 11.76 bits

13 bits

SEAC-4 J.Teuhola 2016 79

Another source message

 “ABCDABCABA”

 Precise probabilities:

 P(A) = 0.4, P(B) = 0.3, P(C) = 0.2, P(D) = 0.1

 Final range length:

 0.4  0.3  0.2  0.1  0.4  0.3  0.2  0.4  0.3  0.4 =

 0.44  0.33  0.22  0.1 = 0.000002764

-log20.000002764  18.46 = entropy

SEAC-4 J.Teuhola 2016 80

Arithmetic coding: Basic theorem

 Theorem 4.2.

Let range = upper  lower be the final probability

interval in Algorithm 4.8. The binary

representation of mid = (upper + lower) / 2

truncated to l(x) = log2(1/range) + 1 bits is a

uniquely decodable code for message x among

prefix-free messages.

 Proof: Skipped.

SEAC-4 J.Teuhola 2016 81

Optimality

Expected length of an n-symbol message x:

Bits per symbol:

)()()(xlxPL n

H x

n
L

H x

n n

n n() ()() ()

  
2

H S L H S
n

() ()  
2










 









P x

P x
() log

()2

1
1

 








P x

P x
() log

()2

1
2

  P x
P x

P x() log
()

()2

1
2

 H S n()() 2

SEAC-4 J.Teuhola 2016 82

Ending problem

 The above theorem holds only for prefix-free messages.

 The ranges of a message and its prefix overlap, and

may result in the same code value.

 How to distinguish between “VIRTA” and “VIRTANEN”?

 Solutions:

 Transmit the length of the message before the message itself:

“5VIRTA” and “8VIRTANEN”.

This is not good for online applications.

 Use a special end-of-message symbol, with prob = 1/n where n

is an estimated length of the message.

Good solution unless n is totally wrong.

SEAC-4 J.Teuhola 2016 83

 Arithmetic coding: Incremental transmission

 Bits are sent as soon as they are known.

 Decoder can start well before the encoder has finished.

 The interval is scaled (zoomed) for each output bit:
Multiplication by 2 means shifting the binary point one
position to the right:

 upper: 0.011010… 0.11010…
 lower: 0.001101… 0.01101…

 upper: 0.110100… 0.10100…
 lower: 0.100011… 0.00011…

 Note: The common bit also in midpoint value.

and transmit 0

and transmit 1

SEAC-4 J.Teuhola 2016 84

Arithmetic coding: Scaling situations

// Number p of pending bits initialized to 0

upper < 0.5:

 transmit bit 0 (plus p pending 1’s)

 lower := 2  lower

 upper := 2  upper

lower > 0.5

 transmit bit 1 (plus p pending 0’s)

 lower := 2  (lower  0.5)

 upper := 2  (upper  0.5)

lower > 0.25 and upper < 0.75:

 Add one to the number p of pending bits

 lower = 2  (lower  0.25)

 upper = 2  (upper  0.25)

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

SEAC-4 J.Teuhola 2016 85

 Decoder operation

 Reads a sufficient number of bits to determine the first

symbol (unique interval of cumulative probabilities).

 Imitates the encoder: performs the same scalings, after

the symbol is determined

 Scalings drop the ‘used’ bits, and new ones are read in.

 No pending bits.

SEAC-4 J.Teuhola 2016 86

 Implementation with integer arithmetic

 Use symbol frequencies instead of probabilities

 Replace [0, 1) by [0, 2k1)

 Replace 0.5 by 2k-11

 Replace 0.25 by 2k-21

 Replace 0.75 by 32k-21

Formulas for computing the next interval:

 upper := lower + (range  cum[symbol] / total_freq)  1

 lower := lower + (range  cum[symbol1] / total_freq)

Avoidance of overflow: range  cum() < 2wordsize

Avoidance of underflow: range > total_frequency

SEAC-4 J.Teuhola 2016 87

 Solution to avoiding over-/underflow

 Due to scaling, range is always > 2k-2

 Both overflow and underflow are avoided, if

total_freq < 2k-2, and 2k2  w = machine word

Suggestion:

 Present total_freq with max 14 bits, range with 16 bits

Formula for decoding a symbol x from a k-bit value:

cum x
value lower total freq

upper lower
cum x()

() _
() 

   

 









 1

1 1

1

SEAC-4 J.Teuhola 2016 88

4.4.1. Adaptive arithmetic coding

Advantage of arithmetic coding:

 Used probability distribution can be changed at any time,

but synchronously in the encoder and decoder.

Adaptation:

 Maintain frequencies of symbols during the coding

 Use the current frequencies in reducing the interval

Initial model; alternative choices:

 All symbols have an initial frequency = 1.

 Use a placeholder (NYT = Not Yet Transmitted) for the

unseen symbols, move symbols to active alphabet at the

first occurrence.

SEAC-4 J.Teuhola 2016 89

Basic idea of adaptive arithmetic coding

 Alphabet: {A, B, C, D}

 Message to be coded: “AABAAB …”

Intervals

Frequencies

A

B

C

D

{1,1,1,1}

A

B

C

D

{2,1,1,1}

A

B

C

D

{3,1,1,1}

A

B

C

D

{3,2,1,1}

A

B

C

D

{4,2,1,1}

Interval size 1 1/4 1/10 1/60 3/420

SEAC-4 J.Teuhola 2016 90

Adaptive arithmetic coding (cont.)

Biggest problem:

 Maintenance of cumulative frequencies; simple vector

implementation has complexity O(q) for q symbols.

General solution:

 Maintain partial sums in an explicit or implicit binary tree

structure.

 Complexity is O(log2 q) for both search and update

SEAC-4 J.Teuhola 2016 91

Tree of partial sums

54 13 22 32 60 21 15 47

67 54
81 62

121 143

264

A B C D E F G H

SEAC-4 J.Teuhola 2016 92

Implicit tree of partial sums

 f f1+f2 f3 f1+...+f4 f5 f5+f6 f7 f1+...+f8

 f9 f9+f10 f11 f9+...+f12 f13 f13+f14 f15 f1+...+f16

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Correct indices are obtained by bit-level operations.

SEAC-4 J.Teuhola 2016 93

4.4.2. Arithmetic coding for a binary alphabet

Observations:

 Arithmetic coding works as well for any size of alphabet,
contrary to Huffman coding.

 Binary alphabet is especially easy: No cumulative
probability table.

Applications:

 Compression of black-and-white images

 Any source, interpreted bitwise

Speed enhancement:

 Avoid multiplications

 Approximations cause additional redundancy

SEAC-4 J.Teuhola 2016 94

Arithmetic coding for binary alphabet (cont.)

Note:

 Scaling operations need only multiplication by two,

implemented as shift-left.

 Multiplications appearing in reducing the intervals are the

problem.

Convention:

 MPS = More Probable Symbol

 LPS = Less Probable Symbol

 The correspondence to actual symbols may change

locally during the coding.

SEAC-4 J.Teuhola 2016 95

Skew coder (Langdon & Rissanen)

 Idea: approximate the probability p of LPS by 1/2Q for

some integer Q > 0.

 Choose LPS to be the first symbol of the alphabet

(can be done without restriction)

 Calculating the new range:

 For LPS: range  range >> Q;

 For MPS: range  range  (range >> Q);

 Approximation causes some redundancy

 Average number of bits per symbol (p = exact prob):

pQ p Q  () log ()1 1

1

22

SEAC-4 J.Teuhola 2016 96

Solving the ‘breakpoint’ probability

 Choose Q to be either r or r+1, where r = log2p

 Equate the bit counts for rounding down and up:

)
2

1
1(log)ˆ1()1(ˆ)

2

1
1(log)ˆ1(ˆ

122 


rr
prpprp

z

z
p




1
ˆ z

r

r






log
/

/2

11 1 2

1 1 2
where

which gives

p̂

SEAC-4 J.Teuhola 2016 97

Skew coder (cont.)

Probability approximation table:

 Probability range Q Effective probability

0.3690 – 0.5000 1 0.5

0.1820 – 0.3690 2 0.25

0.0905 – 0.1820 3 0.125

0.0452 – 0.0905 4 0.0625

0.0226 – 0.0452 5 0.03125

0.0113 – 0.0226 6 0.015625

Proportional compression efficiency:

)2/11log()1(

)1log()1(log
QppQ

pppp

gthaverageLen

entropy






SEAC-4 J.Teuhola 2016 98

QM-coder

 One of the methods for e.g. black-and-white images

 Others:

 Q-coder (predecessor of QM, tailored to hardware impl. / IBM)

 MQ-coder (in JBIG2; Joint Bi-Level Image Compression Group)

 M-coder (in H.264/AVC video compression standard)

 Tuned Markov model

(finite-state automaton) for

adapting probabilities.

Interval setting:

 MPS is the ‘first’ symbol

 Maintain lower and range:

range  p

range(1-p)

lower+range

lower+range(1-p)

lower

SEAC-4 J.Teuhola 2016 99

QM-coder (cont.)

Key ideas:

 Operate within interval [0, 1.5)

 Rescale when range < 0.75

 Approximate range by 1 in multiplications
 range  p  p
 range  (1p)  range  p

 No pending bits, but a ‘carry’ bit can propagate to the
output bits, which must be buffered. Unlimited
propagation is prevented by ‘stuffing’ 0-bits after bytes
containing only 1’s (small redundancy).

 Practical implementation is done using integers
within [0, 65536).

SEAC-4 J.Teuhola 2016 100

4.4.3. Practical problems with arithmetic coding

 Not partially decodable nor indexable:

Start decoding always from the beginning even to recover

a small section in the middle.

 Vulnerable: Bit errors result in a totally scrambled message

 Not self-synchronizable, contrary to Huffman code

Solution for static distributions: Arithmetic Block Coding

 Applies the idea of arithmetic coding within machine words

 Restarts a new coding loop when the word bits are ‘used’.

 Resembles Tunstall code, but no explicit codebook.

 Fast, because avoids the scalings and bit-level operations.

 Non-optimal code length, but rather close

