
SEAC-6 J.Teuhola 2016 153

6. Dictionary models for text compression

Previous techniques:

 Predictive, statistical

 One symbol at a time

Dictionary coding:

 Substrings replaced by pointers to a dictionary

 Pointers are coded (often fixed-length codes)

 Dictionary can be static, semi-adaptive or adaptive

 Dictionary can be implicit or explicit

Can be proved:

 Each dictionary scheme has an equivalent statistical
scheme achieving at least the same compression.

SEAC-6 J.Teuhola 2016 154

Viewpoints on dictionary models

Advantages:

 Simple

 Fast

 Practical

Design decisions:

 Selection of substrings to be included in the dictionary

 Restricting the length of substrings

 Restricting the window where the dictionary is taken from

in adaptive methods

 Encoding of references to the dictionary

SEAC-6 J.Teuhola 2016 155

Parsing strategies in dictionary modelling

Division of the message into substrings:

 Greedy: Choose the longest matching substring at each

step from left to right.

 Longest-fragment-first (LFF): Choose the substring

matching somewhere in the unparsed parts of the

message.

 Optimal: Create a graph of all matching phrases and

determine its shortest path.

SEAC-6 J.Teuhola 2016 156

Dictionary modelling approaches

(1) Static dictionary:

 Fixed for all sources

 Known to the encoder and decoder

 Choice of substrings (words, phrases) is a problem.

 Depends too much on the message type

 E.g. a complete English dictionary would be too large

and not at all source-specific.

SEAC-6 J.Teuhola 2016 157

Dictionary modelling approaches (cont.)

(2) Semi-adaptive dictionaries:

 Create a dictionary D for the current source message

 Finding an optimal dictionary is NP-complete

 Size |D| is usually fixed

 Typical heuristic: Find approximately equi-frequent

substrings and use fixed-length codes (log2|D| bits)

 Using e.g. Huffman coding does not usually pay.

SEAC-6 J.Teuhola 2016 158

Dictionary modelling approaches (cont.)

(3) Adaptive dictionaries:

 Two large ‘families’ of methods:

 LZ77: Implicit dictionary; any substring from the

processed part of the message

 LZ78: Explicit, evolving dictionary; only selected

substrings of the processed part.

[’L’  Abraham Lempel, ’Z’  Jacob Ziv]

SEAC-6 J.Teuhola 2016 159

Illustrating the idea of LZ77 coding

…ABRACADABRA DABCAR…

search buffer lookahead buffer (F)

sliding window (N)

3

5

Code triple : <5, 3, C>

next char

SEAC-6 J.Teuhola 2016 160

Code structure in LZ77

 Substring code consists of triples <offset, length, char>

 Offset = distance of the longest match from the end

of the search buffer

 Length = length of the matching substring

 Char = symbol following the match in the lookahead

buffer

 Triple size = log2(NF) + log2F + log2 q bits,

when using fixed-length codes for the components.

SEAC-6 J.Teuhola 2016 161

Features of LZ77

Special case:

 Longest match extends to the search buffer

 Decoder can recover the substring simply by copying

symbols from left to right

Optimality of LZ77:

 Approaches the best possible semi-adaptive method that

has full knowledge of the statistics of the source.

SEAC-6 J.Teuhola 2016 162

Example: matching pattern extends to the

lookahead buffer

…ABRACADABRA AAAAAB…

5

1

Code triple : <1, 5, B>

next char

Search buffer Lookahead buffer

SEAC-6 J.Teuhola 2016 163

Some members of the LZ77 family

LZR (Rodeh, Pratt, Even, 1981):

 No window; the complete processed part is used

 Variable-length coding of arbitrarily large offsets

LZSS (Storer, Szymanski, 1982):

 No character extension of matches

 Flag bit tells, whether the codeword represents

a single symbol, or an offset & length pair.

SEAC-6 J.Teuhola 2016 164

Some members of the LZ77 family (cont.)

LZB (Bell, 1987):

 Match length is -coded

 Shorter offsets for the front part of the message

 Some other tunings

LZH (Brent, 1987):

 Huffman coding of the components of references

SEAC-6 J.Teuhola 2016 165

Some members of the LZ77 family (cont.)

GZip (Gailly, 90’s):

 Part of Gnu software (for Unix)

 Fast searching of matches by three-character hashing

 Raw symbols are encoded in case of no match

 Two Canonical Huffman codes:

 1) Lengths of matches and raw symbols

 2) Offsets (when matching succeeded)

 Semi-adaptive blockwise coding (64 K at a time)

 Reads the input only once

 Either greedy or look-ahead parsing

 Outperforms most other LZ-variants

SEAC-6 J.Teuhola 2016 166

GZip: Data structure

Hash index

 … ABC … ABC … ABC … ABC …

hash(”ABC”)
Pointer lists

of restricted

length (latest

at front)

Search buffer Lookahead buffer Offset

SEAC-6 J.Teuhola 2016 167

Drawbacks of LZ77

 Small window results in short matches.

 Large window results in long offsets.

 Distinct code values are reserved for all instances of

a repeating pattern.

 Searching for the longest match may be slow.

SEAC-6 J.Teuhola 2016 168

6.2. LZ78 family of adaptive dictionary methods

Features of LZ78:

 Explicit dictionary, grows dynamically.

 Both encoder and decoder build the dictionary in an

identical manner.

 The code consists of <index, symbol> pairs.

 Matching substring appended by the successor symbol

is the next dictionary entry.

 In principle, the dictionary grows without bounds

 In practice, the size is restricted; overflow cases can be

handled by flushing, pruning or freezing the dictionary

SEAC-6 J.Teuhola 2016 169

LZ78 example

Source: “wabba-wabba-wabba-wabba-woo-woo-woo”

Lookahead buffer Encoder output Dictionary index Dictionary entry

wabba-wabba-... <0, w> 1 w

abba-wabba-w... <0, a> 2 a

bba-wabba-wa... <0, b> 3 b

ba-wabba-wab... <3, a> 4 ba

-wabba-wabba... <0, -> 5 -

wabba-wabba-... <1, a> 6 wa

bba-wabba-wa... <3, b> 7 bb

a-wabba-wabb... <2, -> 8 a-

wabba-wabba-... <6, b> 9 wab

ba-wabba-woo... <4, -> 10 ba-

wabba-woo-wo... <9, b> 11 wabb

a-woo-woo-wo… <8, w> 12 a-w

oo-woo-woo <0, o> 13 o

o-woo-woo <13, -> 14 o-

woo-woo <1, o> 15 wo

o-woo <14, w> 16 o-w

oo <13, o> 17 oo

SEAC-6 J.Teuhola 2016 170

Optimality of LZ78

 The compression performance is asymptotically

optimal, if the message is generated by a stationary,

ergodic source.

 Convergence to the optimum is quite slow

 LZ77 family has generally slightly better compression

performance in practice.

SEAC-6 J.Teuhola 2016 171

Some members of the LZ78 family

LZW (Welch, 1984):

 One of the most famous LZ variants

 The code consists of only references to the dictionary;
the appended symbols are omitted.

 The dictionary must be initialized with all symbols of
the alphabet.

 The decoder can decide the new entry to be added to
the dictionary only after seeing the next match (overlap
of one symbol).

 Small problem: reference to the yet unsolved entry;
Solution: unsolved symbol equals the first symbol of
the match.

 Typical dictionary size: 4096 entries; 12-bit references.

SEAC-6 J.Teuhola 2016 172

LZW example

Source: ”aabababaaa...”

 Index Substring Derived from

 0 a

 1 b

 2 aa 0+a

 3 ab 0+b

 4 ba 1+a

 5 aba 3+a

 6 abaa 5+a

… … …

SEAC-6 J.Teuhola 2016 173

LZW example: decoder steps

 Index Development of dictionary for coded indexes

 0 0 1 3 5

 0 a a a a a a

 1 b b b b b b

 2 aa a? aa aa aa aa

 3 ab a? ab ab ab

 4 ba b? ba ba

 5 aba ab? aba

 6 abaa aba?

… … …

SEAC-6 J.Teuhola 2016 174

Some members of the LZ78 family (cont.)

Unix compress (= LZC):

 Close variant of LZW.

 Reference lengths grow gradually to the maximum.

 Compression performance is monitored; if it gets too
bad, the dictionary is discarded and rebuilt.

GIF (Graphics Interchange Format):

 Similar to Unix compress

 Some tuning for image data

 Blockwise processing (max 255 bytes)

 Not comparable with the best (but lossy) image
compressors

SEAC-6 J.Teuhola 2016 175

Some members of the LZ78 family (cont.)

V.42 bis:

 V.42 = CCITT recommendation procedure for data
transmission in telephone networks.

 V.42 bis = related data compression.

 Modification of LZW.

 After reaching the maximum dictionary size, the method
reuses unextended entries.

 Upper bound for lengths of encoded substrings.

 Latest dictionary entry cannot be used immediately.

LZT (Tischer, 1987):

 Replacement of least recently used dictionary entries by
new ones (= LRU strategy).

SEAC-6 J.Teuhola 2016 176

Some members of the LZ78 family (cont.)

LZJ (Jakobsson, 1985):

 All unique substrings  h included in the dictionary.

 Prunes entries, starting from those that occurred only once

 Encoding is faster than decoding.

LZFG (Fiala, Greene, 1989):

 One of the most effective LZ variants.

 A kind of combination of LZ77 and LZ78.

 Sliding window, arbitrarily long substrings

 Stored strings have matched strings as prefixes

 Data structure: Patricia trie

 Code: reference to a node + possible end position of the
match (if not unique).

SEAC-6 J.Teuhola 2016 177

LZFG: Phasing-in technique

 Defines variable-length code codes for integers from

range [0, m1], where m need not be a power of 2.

 Almost fixed-length code: lengths differ at most by one

 Numbers [0, 2log2 mm1] encoded with log2m bits,

 Numbers [2log2 mm, m1] encoded with log2m+1

bits

 Used in many other compression methods, as well.

SEAC-6 J.Teuhola 2016 178

LZFG: Example of phasing-in technique

 m = 10, and thus 2log mm1 = 5

 0 = 000 5 = 101

 1 = 001 6 = 1100

 2 = 010 7 = 1101

 3 = 011 8 = 1110

 4 = 100 9 = 1111

SEAC-6 J.Teuhola 2016 179

LZFG: Start-Step-Stop codes

 Several (n) different lengths of simple binary codes.

 The first 2start numbers encoded with start bits.

 The next 2start+step numbers are encoded with start+step

bits.

 The next 2start+2step numbers encoded with start+2step

bits, etc.

 The biggest code length used is stop.

 The number of different codes available is

2 2

2 1

stop step start

step

 



SEAC-6 J.Teuhola 2016 180

LZFG: Start-Step-Stop codes (cont.)

Example: Start-step-stop (1, 2, 5)

 0 = 1 0 2 = 01 000 10 = 00 00000

 1 = 1 1 3 = 01 001 11 = 00 00001

 4 = 01 010 12 = 00 00010

 9 = 01 111 41 = 00 11111

 The last group of codes can be phased-in, if the total

number of codes is  m.

 Normal k-length binary code = start-step-stop (k, 1, k).

 -code = start-step-stop (0, 1, ).

SEAC-6 J.Teuhola 2016 181

Performance comparison for Calgary Corpus
[Widely used test data; the results are borrowed from the literature]

File Size LZ77 LZSS LZH GZIP LZ78 LZW LZJ’ LZFG PPMZ

bib 111261 3.75 3.35 3.24 2.51 3.95 3.84 3.63 2.90 1.74

book1 768771 4.57 4.08 3.73 3.26 3.92 4.03 3.67 3.62 2.21

book2 610856 3.93 3.41 3.34 2.70 3.81 4.52 3.94 3.05 1.87

geo 102400 6.34 6.43 6.52 5.34 5.59 6.15 6.05 5.70 4.03
news 377109 4.37 3.79 3.84 3.06 4.33 4.92 4.59 3.44 2.24

obj1 21504 5.41 4.57 4.58 3.83 5.58 6.30 5.19 4.03 3.67

obj2 246814 3.81 3.30 3.19 2.63 4.68 9.81 5.95 2.96 2.23

paper1 53161 3.94 3.38 3.38 2.79 4.50 4.58 3.66 3.03 2.22

paper2 82199 4.10 3.58 3.57 2.89 4.24 4.02 3.48 3.16 2.21
pic 513216 2.22 1.67 1.04 0.82 1.13 1.09 2.40 0.87 0.79

progc 39611 3.84 3.24 3.25 2.67 4.60 4.88 3.72 2.89 2.26

progl 71646 2.90 2.37 2.20 1.81 3.77 3.89 3.09 1.97 1.47

progp 49379 2.93 2.36 2.17 1.81 3.84 3.73 3.14 1.90 1.48

trans 93695 2.98 2.44 2.12 1.61 3.92 4.24 3.52 1.76 1.24

aver. 224402 3.94 3.43 3.30 2.70 4.13 4.71 4.00 2.95 2.12

