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5. Predictive text compression methods 

Change of viewpoint: 

 Emphasis on modelling instead of coding. 

 

Main alternatives for text modelling and compression: 
 

1. Predictive methods: 

 One symbol at a time 

 Context-based probabilities for entropy coding 
 

2. Dictionary methods: 

 Several symbols (= substrings) at a time 

 Usually not context-based coding 
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Purpose of a predictive model 

 Supply probabilities for message symbols. 

 A good model makes good ’predictions’ of symbols to 

follow. 

 A good model assigns a high probability to the symbol 

that will actually occur. 

 A high probability will not ’waste’ code space e.g. in 

arithmetic coding. 

 A model can be static (off-line coding in two phases) or 

dynamic (adaptive, one-phase coding) 
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(1) Finite-context models 

 A few (k) preceding symbols (’k-gram’) determine the 

context for the next symbol. 

 Number k is called the order of the model. 

 Special agreement: 

k = 1 means that each symbol has probability 1/q 

 A distribution of symbols is built (maintained) for each 

context. 

 In principle, increasing k will improve the model. 

 Problem with large k: 

Reliable statistics cannot be collected; 

the (k+1)-grams occur too seldom. 
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Illustration of a finite-context model 

Sample text: 

“... compression saves resources ...” 

Context Successor Prob 

… … … 

com e 0.2 

com m 0.3 

com p 0.5 

… … … 

omp a 0.4 

omp o 0.3 

omp r 0.3 

… … … 
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(2) Finite-state models 

 May capture non-contiguous dependencies between 
symbols; have a limited memory. 

 Are also able to capture regular blocks (alignments) 

 Markov model 

 Finite-state machine: states, transitions, trans.probabilities 

 Compression: Traversal in the machine, directed by 
source symbols matching with transition labels. 

 Encoding based on the distribution of transitions leaving 
the current state. 

 Finite-state models are in principle stronger than finite-
context models; the former can simulate the latter. 

 Automatic generation of the machine is difficult. 

 Problem: the machine tends to be very large. 
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Finite-state model: The memory property 

 Modelling of matching parentheses: 

“ …(a+b)(c-d) + (a-c)(b+d)…” 

 

States with low probability for ’)’ States with higher probability for ’)’ 

’(’ 

’)’ 
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 (3) Grammar models 

 More general than finite-state models. 

 Can capture arbitrarily deep nestings of structures. 

 The machine needs a stack. 

 Model description: context-free grammar with 

probabilities for the production rules. 

 Automatic learning of the grammar is not feasible on 

the basis of the source message only. 

 Natural language has a vague grammar, and not very 

deep nested structures. 

 Note: XML is a good candidate for compressing using a 

grammar model (implementations exist). 
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Sketch of a grammar model 

 Production rules for a fictitious programming language, 

complemented with probabilities : 

 

 <program> := <statement>[0.1] |  

   <program> <statement> [0.9] 

 <statement> := <control statement> [0.3] | 

       <assignment statement> [0.5] | 

       <input/output statement> [0.2] 

 <assignment statement> := <variable> ‘=‘ <expression> [1.0] 

 <expression> = <variable> [0.4] | 

       <arithmetic expression> [0.6] 

 …… 
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5.1. Predictive coding based on fixed-length contexts 

Requirements: 

 Context (= prediction block) length is fixed = k 

 Approximations for successor distributions 

 Default predictions for unseen contexts 

 Default coding of unseen successors 
 

Data structure: 

 Trie vs. hash table 

 Context is the argument of the hash function H 

 Successor information stored in the home address 

 Collisions are rare, and can be ignored; 
successors of collided contexts are mixed 

 Hash table more compact than trie: contexts not stored 
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Three fast fixed-context approaches of 

increasing complexity 

 

1. Single-symbol prediction & 

coding of success/failure 

 

2. Multiple-symbol prediction of probability order & 

universal coding of order numbers 

 

3. Multiple-symbol prediction of probabilities & 

arithmetic coding 
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A. Prediction based on the latest successor 

Algorithm 5.1. Predictive success/failure encoding using fixed-length contexts. 
Input: Message X = x1x2 ... xn, context length k, hashtable size m, default symbol d 

Output: Encoded message, consisting of bits and symbols. 

begin 

 for i := 0 to m1 do T[i] := d 

 Send symbols x1, x2, ..., xk as such to the decoder 
 for i := k+1 to n do 

 begin 

      addr := H(xik ... xi1) 

      pred := T[addr] 

      if pred = xi 

  then Send bit 1 /* Prediction succeeded */ 

  else begin 

       Send bit 0 and symbol xi /* Prediction failed */ 

       T[addr] := pred 

  end 
 end 

end 
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Prediction based on the latest successor: 

data structure 

 

 
Character string S 

A B C D X Y Z 

Y X Z 

Hash function H 

Hash table T 

Prediction 

blocks 
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B. Prediction of successor order numbers 
Algorithm 5.2. Prediction of symbol order numbers using fixed-length contexts. 

Input: Message X = x1x2 ... xn, context length k, hash table size m. 

Output: Encoded message, consisting of  the first k symbols and -coded integers. 

begin 

 for i := 0 to m1 do T[i] := NIL 

 Send symbols x1, x2, ..., xk as such to the decoder 

 for i := k+1 to n do 

 begin 

      addr := H(xik ... xi1) 

      if xi is in list T[addr] 

      then begin 

  r := order number of xi in T[addr] 

  Send (r) to the decoder 

  Move xi to the front of list T[addr] 

  end 

      else begin 

  r := order number of xi in alphabet S, ignoring symbols in list T[addr] 

  Send (r) to the decoder 

  Create a node for xi and add it to the front of list T[addr] 

  end 

 end 

end 
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Prediction of successor order numbers: 

the data structure 

  Character string S 

A B C D X Y Z 

Hash function H 

Hash table T 

Prediction 

blocks 

Y 

V 

A 

X 

A 

Z 

W 

A 

Real 

successor 

lists 

Virtual 

successor 

lists 
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C. Statistics-based prediction of successors 

Algorithm 5.3. Statistics-based coding of successors using fixed-length contexts. 
Input:     Message X = x1x2 ... xn, context length k, alphabet size q, hash table size m. 
Output:  Encoded message, consisting of  the first k symbols and an arithmetic code. 

begin 
 for i := 0 to m1 do 

 begin T[i].head := NIL; T[i].total := q; 
 Send symbols x1, x2, ..., xk as such to the decoder 
 Initialize arithmetic coder 

 for i := k+1 to n do 
 begin 

  addr := H(xik ... xi1) 
  if xi is in list T[addr].head (node N) 
  then F := sum of frequencies of symbols in list T[addr].head before N. 

  else begin 
   F := sum of frequencies of real symbols in list L headed by T[addr].head. 

   F := F + (order number of xi in the alphabet, ignoring symbols in list L) 
   Add a node N for xi  into list L, with N.freq = . 
   end 

  Apply arithmetic coding to the cumulative probability interval 
   [F / T[i].total),  (F+N.freq) / T[i].total) 

  T[i].total := T[i].total + 1 
  N.freq := N.freq + 1 
 end   /* of for i := … */ 

 Finalize arithmetic coding 
end 
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Statistics-based prediction of successors: 

Data structure 

  
Character string S 

A B C D X Y Z 

Hash function 

H 

Hash table 

T 

Prediction 

blocks 

3 

2 

 

2 X 

 

 
A 

4 

3 

 

 

Real 

successor 

lists 

Virtual 

successor 

lists 

V 

Y 

A 

Z 

W 

A 

Total frequency 

Head of successor list (ptr) 
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5.2. Dynamic-context predictive compression 

       (Ross Williams, 1988) 

Idea: 

 Predict on the basis of the longest context that has 

occurred before. 

 Context lengths grow during adaptive compression. 

 

Problems: 

 How to store observed contexts? 

 How long contexts should we store? 

 When is a context considered reliable for prediction? 

 How to solve failures in prediction?  
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Dynamic-context predictive compression (cont.) 

Data structure: 

 Trie, where paths represent backward contexts 

 Nodes store frequencies of context successors 

 Growth of the trie is controlled 
 

Parameters: 

 Extensibility threshold (et  [2, )) 

 Maximum depth (m) 

 Maximum number of nodes (z) 

 Credibility threshold (ct  [1, )) 
 

Zero frequency problem: 

 Probability of a symbol with x occurrences out of y:  ( , )
( )

x y
qx

q y






1

1
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Dynamic-context predictive compression: 

Trie for “JAPADAPADAA ...” 

  

A 

[1,2,0,2] 

D 

[2,0,0,0] 

J 

[1,0,0,0] 

P 

[2,0,0,0] 

A 

[2,0,0,0] 

A 

[2,0,0,0] 

D 

[1,0,0,1] 

J 

[0,0,0,1] 

P 

[0,2,0,0] 

A 

[1,0,0,1] 

A 

[0,2,0,0] 

P 

[2,0,0,0] 

D 

[1,0,0,0] 

J 

[1,0,0,0] 
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Using the previous trie 

 Assumed continuation: “JAPADAPADAA | DA …” 

 Parameters: q=4, ct=1 

 Successor ‘D’: 
 Longest downward path in the trie: A[1,2,0,2] which is credible 

 Successor prob’s:  P(‘A’)=5/24, P(‘D’)=P(‘P’)=9/24, P(‘J’)=1/24 

 Inf(‘D’) = -log2(9/24)  1.415 bits 

 Node update: A[1,2,0,2]A[1,3,0,2] 

 Insert new node: A-A[0,1,0,0] 

 Successor ‘A’: 
 Longest credible path: D-A[2,0,0,0] 

 Probability of successor ‘A’ = 9/12, Inf(‘A’) = -log2(3/4)  0.415 bits 

 Node updates: D[2,0,0,0]D[3,0,0,0], D-A[2,0,0,0]  D-A[3,0,0,0], 
Insert new node D-A-A[1,0,0,0] 
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Dynamic-context predictive compression: 

The algorithm 

Algorithm 5.4. Dynamic-context predictive compression. 

Input:   Message X = x1x2 ... xn, parameters et, m, z, and ct. 

Output:  Encoded message. 

begin 

 Create(root);  nodes := 1; 

 Initialize arithmetic coder 

 for i := 1 to q do root.freq[i] := 0 

 for i := 1 to n do 

 begin 

  current := root;  depth := 0 

  next := current.child[xi1]    /* Assume a fictitious symbol x0 */ 

  while depth < m and next  NIL cand next.freq  ct do 

  begin 

   current := next 

   depth := depth + 1 

   next := current.child[xidepth1] 

  end 

  arith_encode((current.cumfreq[xi1], current.freqsum), 

        (current.cumfreq[xi], current.freqsum)) 
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Dynamic-context predictive compression: 

The algorithm (cont.) 

  {Start to update the trie } 

  next := root; depth := 0 

  while next  NIL do 

  begin 

   current := next 

   current.freq[xi] := current.freq[xi] + 1 

   depth := depth + 1 

   next := current.child[xidepth] 

  end 

  /* Continues … */ 
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Dynamic-context predictive compression: 

The algorithm (cont.) 

  /* Study the possibility of extending the trie */ 
  if depth < m and nodes < z and current.freqsum  et 

  then begin 

   new(newnode) 

   for j := 1 to q do 

   begin 
        newnode.freq[j] := 0 

        newcode.child[j] 

   end 

   current.child[xi-depth] := newnode 

   newnode.freq[xi] := 1 
   nodes := nodes + 1 

  end 

 end 

 Finalize arithmetic coder 

end 
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Test results 

 

 

 

     

    

      

     

Text type Source size Bits per symbol 

English text (Latex) 39 836 3.164 

Dictionary 201 039 4.081 

Pascal program 20 933 2.212 

•  The results are rather good, but not the best possible. 

 

•  Reason: only the longest credible contexts are used; 

   if prediction fails, the shorter contexts could succeed. 


