" A
4. Source Encoding Methods

m Called also

entropy coders, because the methods try to get
close to the entropy (i.e. lower bound of compression).

statistical coders, because the methods assume the probability
distribution of the source symbols to be given (either statically or
dynamically) in the source model.

m The alphabet can be finite or infinite

m Sample methods:

Shannon-Fano coding

Huffman coding (with variations)
Tunstall coding

Arithmetic coding (with variations)

SEAC-4 J.Teuhola 2016 38

" A
4.1. Shannon-Fano code

m Firstidea: Code length I, =[log, p .
m This satisfies: H(S) <L<H(S)+1

m Always possible, because Kraft inequality is satisfied:

Ii 2 |Og2(l/ pi):> b, >1/2" jz P; 222—];i:>:|'222—];‘

Problems:
m The decoding tree may not be complete (succinct).
m How to assign codewords?

m Shannon-Fano method solves these problems by
balanced top-down decomposition of the alphabet.

SEAC-4 J.Teuhola 2016

39

" J
Example

m p, =p, =0.3: code lengths: [-log,0.3 | = 2
m p;=p,=ps = ps = 0.1: code lengths: [—log,0.1] =4
m E.Q.

S S; St Sg

SEAC-4 J.Teuhola 2016

40

" A
Algorithm 4.1.
Shannon-Fano codebook generation

Input: Alphabet S ={s, ..., Sq }, probability distribution
P ={py, ..., Pg }, where p; = p;,;.
Output: Decoding tree for S.

begin
Create a root vertex r and associate alphabet S with it.
If S has only one symbol then returnr.

Find | (# O and = q) such that Zijzl P; and ZLH p, are
the closest.

Find decoding trees r, and r, for the sub-alphabets
{S1, ..., s and {s;+1, ..., s,} recursively and set them to
subtrees of r, with labels 0 and 1.

Return the tree rooted by r.
end

SEAC-4 J.Teuhola 2016 a1

(1) (2) {a,b,c,d,e,f}: 1.0

{a,b,c,d,e,f}: 1.0

O

0 1

{a,b}: 0.€ {c,d,e,f}; 0.4

(3) {a,b,c,d,e,f}:1.0

{c,d,e,f}. 0.4

a. 0.3 bh:0.3

(4) fab,c.d.ef: 1.0

{c,d,e,f}.0.4

a:0.3 b:0.3 {cd}0.2{ef}:0.2

() fab,c.defl1.0

{c,d,e,f}:0.4

c:0.1 d:0.1 e:0.1 f:0.1

SEAC-4 J.Teuhola 2016

42

4.2. Huffman code

m Best-known source compression method.
m Builds the tree bottom-up (contrary to Shannon-Fano).

Principles:

Two least probable symbols appear as lowest-level
leaves in the tree, and differ only at the last bit.

A pair of symbols s; and s; can be considered a meta-
symbol with probability pi+p;.

Pairwise combining is repeated g-1 times.

SEAC-4 J.Teuhola 2016 43

Algorithm 4.2. Huffman codebook generation

Input: Alphabet S ={s,, .. s} probablllty distribution
P = {pl’ - pq} W ere pl Z Pi+1-
Output: Decoding tree for S.

begin
Initialize forest F to contain a one-node tree T, for each symbol s,
and set weight(T,) = p;.
while |[F| >1do
begin
Let X and Y be two trees with the lowest weights.

Create a binary tree Z, with X and Y as subtrees
(equipped with labels 0 and 1).
Set weight(Z) = weight(X) + weight(Y).
Add Z to forest F and remove X and Y from it.
end

Return the single remaining tree of forest F.
end

SEAC-4 J.Teuhola 2016

44

Example of Huffman codebook generation

1)

a b C d e f

(2) 1
Q.QQA

@ 01
@@@@

..4’?.’&

()

0

a

09

1

039 ©3 @1 @I

b

J.Teuhola 2016

45

Properties of Huffman code

Produces an optimal codebook for the alphabet,
assuming that the symbols are independent.

The average code length reaches the lower bound
(entropy) if for all i; p,= 2’k where k is an integer.

Generally: H(S) < L £ H(S)+p,;+0.086, where p, Iis the
largest symbol probability.

The codebook is not unique:

(1) Equal probabilities can be combined using any
tie-break rule.

(2) Bits 0 and 1 can be assigned to subtrees in either
order.

SEAC-4 J.Teuhola 2016

46

" J
Implementation alternatives of Huffman code

1. Maintain a min-heap, ordered by weight;
the smallest can be extracted from the root.
The complexity of building the tree: O(q),
Inserting a metasymbol: O(log q); altogether O(q log q).

2. Keep the uncombined symbols in a list sorted by
weight, and maintain a queue of metasymbols.

B The two smallest weights can be found from these two
seguences

B The new (combined) metasymbol has weight higher than
the earlier ones.

B Complexity: O(q), if the alphabet is already sorted by
probability.

SEAC-4 J.Teuhola 2016 a7

Special distributions for Huffman code

All symbols equally probable, q = 2%, where k is integer:
block code.

All symbols equally probable, no k such that g = 2k
shortened block code.

Sum of two smallest probabilities > largest:
(shortened) block code.

Geometric (= negative exponential) distribution: p,=c -2':
codewords O, 10, 110, ...,,111..10, 111..11 (cf. unary
code).

Zipf distribution: p; = ¢/i (symbols s; sorted by probability):
compresses to about 5 bits per character for normal text.

SEAC-4 J.Teuhola 2016 48

" A
Transmission of the codebook

m Drawback of (static) Huffman coding:
The codebook must be stored/transmitted to the decoder

m Alternatives:

Shape of the tree (2g-1 bits) plus leaf symbols from left to right
(qllog, ql bits).

Lengths of codewords in alphabetic order (using e.g. universal
coding of integers); worst case O(q log, q) bits.

Counts of different lengths, plus symbols in probability order;
space complexity also O(q log, q) bits.

SEAC-4 J.Teuhola 2016 49

" A
Extended Huffman code

Huffman coding does not work well for:

m Small alphabet

m Skew distribution

m Entropy close to 0, average code length yet > 1.

Solution:

m Extend the alphabet to S(n):
Take n-grams of symbols as units in coding.

m Effect: larger alphabet (g"), decreases the largest
probability.

SEAC-4 J.Teuhola 2016

50

Extended Huffman code (cont.)

Information theory gives:
H(S(n)) < L(n) <H(S(n)) +1

Counted per original symbol:
H(S(n))/n <L < (H(S(n)) + 1)/n

which gives (by independence assumption):
H(S) <L <H(S) +1/n

Thus: Average codeword length approaches the entropy.

m But: The alphabet size grows exponentially, most of the

extended symbols do not appear in messages for large n.
Goal: No explicit tree; codes determined on the fly.

SEAC-4 J.Teuhola 2016 51

Adaptive Huffman coding

Normal Huffman coding: Two phases, static tree

Adaptive compression: The model (& probability
distribution) changes after each symbol; encoder and
decoder change their models intact.

Naive adaptation: Build a new Huffman tree after each
transmitted symbol, using the current frequencies.

Observation: The structure of the tree changes rather
seldom during the evolution of frequencies.

Goal: Determine conditions for changing the tree, and
the technique to do it.

SEAC-4 J.Teuhola 2016 52

Adaptive Huffman coding (cont.)

Sibling property: Each node, except the root, has a
sibling (i.e. the binary tree is complete).

The tree nodes can be listed in non-decreasing order of
weight so that each node is adjacent in the list to its
sibling.

Theorem. A binary tree having weights associated with
Its nodes, as defined above, is a Huffman tree if and only
If it has the sibling property.

Proof. Skipped.

SEAC-4 J.Teuhola 2016 53

" J
Implementation of Adaptive Huffman coding

m Start from a balanced tree with weight = 1 for each leaf;
the weight of an internal node = sum of child weights.

m Maintain a threaded list of tree nodes in increasing order of
weight.

m Nodes of equal weight in the list form a (virtual) block.

m After transmitting the next symbol, add one to the weights
of nodes on the path from the correct leaf up to the root.

m Increasing a node weight by one may violate the
Increasing order within the list.

m Swapping of violating node with the rightmost node in the
same block will recover the order, and maintains the
sibling property. Addition of frequencies continues from the
new parent.

SEAC-4 J.Teuhola 2016 54

" J
Example of Huffman tree evolution

Increase the weight of 'a’ from 1 to 2:

SEAC-4 J.Teuhola 2016

55

Example step in adaptive Huffman coding

ot

,/

VA

\

\ TSN
GW y
,x\---;
.~

(3)x (3)2
AN
(D

SEAC-4 J.Teuhola 2016 56

Notes about Adaptive Huffman coding

Modification:

m Start from an empty alphabet, and a tree with only a
placeholder.

m At the first occurrence of a symbol, transmit the
placeholder code and symbol as such, insert it to the
tree by splitting the placeholder node.

Further notes:

m Complexity proportional to the number of output bits.
m Compression power close to static Huffman code.

m Not very flexible in context-dependent modelling.

SEAC-4 J.Teuhola 2016

57

Canonical Huffman coding

Goal: effective decoding

m Based on lengths of codewords, determined by the
normal Huffman algorithm.

m Chooses one of the many possible bit assignments for

codewords, e.qg.

Symbol Freq. Code | Code ll Code Il
a 10 000 111 000
b 11 001 110 001
C 12 100 011 010
d 13 101 010 011
e 22 01 10 10
f 23 11 00 11

SEAC-4 J.Teuhola 2016

58

Canonical Huffman coding (cont.)

Definition. A Huffman code is any prefix-free assignment
of codewords, the lengths of which are equal to the
depths of corresponding symbols in a Huffman tree.

Ordering of codeword values:

m From longest to shortest

m Same-length codewords have successive code values

m Kk-bit prefix is smaller than any k-bit codeword, i.e.
lexicographic order

Decoding needs:

m The first code value for each length.

m The symbol related to the r'th value within the same-
length codewords.

SEAC-4 J.Teuhola 2016

59

" J
Algorithm 4.3.:
Assignment of canonical Huffman codewords

Input: Length |; for each symbol s; of the alphabet,
determined by the Huffman method.

Output: Integer values of codewords assigned to
symbols, plus the order number of each symbol
within same-length symbols.

SEAC-4 J.Teuhola 2016 60

" J
begin
Set maxlength := Max{l;}
for | := 1 to maxlength do
Set countl[l] :=0
fori:=1toqdo
Set countl[l;] := countl[l;] + 1
Set firstcode[maxlength] := 0
for | .= maxlength — 1 downto 1 do
Set firstcode[l] := (firstcode[l+1] + countl[l+1])/ 2
for | := 1 to maxlength do
Set nextcode[l] := firstcode[l]
fori:=1togdo
begin
Set codeword([i] := nextcode[l;]
Set symbol[l;, nextcode[l;] — firstcode[l;]] ;=1
Set nextcodell;] := nextcode[l;] + 1
end
end

SEAC-4 J.Teuhola 2016

15
14
13

15
14
13

firstcode

codeword

1234

1234

1235

nextcode

1236

124

125

13

1236

14

15

Data structures for
canonical Huffman code

length

count

WlN]| P>

15
14
13
12

13

15

16

SEAC-4 J.Teuhola 2016

" J
Algorithm 4.4.
Decoding of canonical Huffman code.

Input: The numerical value of the first code for each codeword
length, plus the symbol for each order number within the
set of codewords of equal length.

Output: Decoded symbol.

begin
Set value := readbit()
Setl:=1
while value < firstcode[l] do
begin Set value := 2 * value + readbit()
Setl =1+1
end
return symbol[l, value —firstcode[l]]
end

SEAC-4 J.Teuhola 2016 63

Properties of canonical Huffman code

m Small amount of memory for the model in decoding:
firstcode for each different length, and symbol table to
look up the symbol related to a codeword value.

m Decoding is very fast: no walking in the tree;
only a very simple loop for each transmitted bit.

SEAC-4 J.Teuhola 2016 64

Tunstall coding

Goal: Variable-length substrings of the source are
encoded to fixed-length codewords.

Assumption: Independence of symbols: probability of a
string = product of included symbol probabilities.

Idea: For codeword length k, we try to find < 2%
approximately equi-probable blocks of symbols.

Restrictions:

1. It must be possible to parse any message using the selected
blocks.

2. The set of blocks has the prefix-free property.

(1) and (2) together: The parsing trie must be a
complete g'ary tree.

SEAC-4 J.Teuhola 2016 65

Tunstall’s ideas

Build a parsing trie where each parent-child relationship
represents a symbol.

The symbols on the path from the root to a leaf represent
the block which is assigned a codeword.

Each node has a weight = probability of related path.
The number of leaves must be < 2k,
Build the trie top-down.

At each step, extend the leaf having the highest weight
with g child nodes, one for each symbol.

SEAC-4 J.Teuhola 2016 66

Algorithm 4.5: Tunstall codebook generation

m Input: Symbols s;, 1 =1, ..., q of the source alphabet S,
symbol probabilities p;, 1=1, ..., g, and the length
k of codewords to be allocated.

m Output: Trie representing the substrings of the extended
alphabet, with codewords 0, ..., 2%-u attached to
the leaves (0 < u <q - 2), plus the decoding table.

SEAC-4 J.Teuhola 2016 67

begin
Initialize the trie with the root and q first-level
nodes, with labelss,, ... s,, and weights p;, ..., P,
n = 2k-q -- Number of remaining codewords
whilen>qg-1do
Find leaf x from the trie having the biggest weight among leaves.
Add g childrento x, with labelss,, ... s, and weights
weight(x)-py, ..., weight(x)-p,.
Setn:=n-qg+1
end
for each leaf |; in preorder,i=0, 1, 2, ... do
Assign codeword(l;) := 1 (using k bits).
Denote path(l,) = labels from the root to I..
Add pair (i, path(l,)) to the decoding table.
end
end

SEAC-4 J.Teuhola 2016

68

Tunstall code example:
S={A,B, C,D},P={05,0.2,0.2,0.1}, k =4, 2k=16

A B C D
/0.5\ /0.2\ 0.2\ 0.1

A B C D A B C D A B C D
0.25//0.1 {|{0.1 | (0.05] |0.1 | [0.04(0.04| |0.02{|0.1 | |0.04{|0.04{{0.02

A B C D

0.125/0.05| |0.05| [0.025

0000 - AAA 0100 —» AB 1000 — BB 1100 - CB

0001 - AAB 0101 —» AC 1001 - BC 1101 - CC

0010 - AAC 0110—-> AD 1010 - BD 1110 - CD

0010 - AAD 0111 > BA 1011 —» CA 1111 > D

SEAC-4 J.Teuhola 2016

69

" J
Properties of Tunstall code

m Number of unused codewords:

u=2“-(q-1) 2’1 -1
— q q_]_

m Average number of bits per input symbol:

K K

Average pathlength > (P(path)Length(path))

patheTrie

m Not necessarily optimal

SEAC-4 J.Teuhola 2016

70

