
SEAC-4 J.Teuhola 2016 38

4. Source Encoding Methods

 Called also

 entropy coders, because the methods try to get

close to the entropy (i.e. lower bound of compression).

 statistical coders, because the methods assume the probability

distribution of the source symbols to be given (either statically or

dynamically) in the source model.

 The alphabet can be finite or infinite

 Sample methods:

 Shannon-Fano coding

 Huffman coding (with variations)

 Tunstall coding

 Arithmetic coding (with variations)

SEAC-4 J.Teuhola 2016 39

4.1. Shannon-Fano code

 First idea: Code length li = log2 pi.

 This satisfies: H(S)  L  H(S) + 1

 Always possible, because Kraft inequality is satisfied:

Problems:

 The decoding tree may not be complete (succinct).

 How to assign codewords?

 Shannon-Fano method solves these problems by

balanced top-down decomposition of the alphabet.

  
ii

i

lli

l

iii pppl
2

1
1

2

1
2/1)/1(log2

SEAC-4 J.Teuhola 2016 40

Example

 p1 = p2 = 0.3: code lengths: log20.3 = 2

 p3 = p4 = p5 = p6 = 0.1: code lengths: log20.1 = 4

 E.g.

s1 s2

s3 s4 s5 s6

?

0

0 0

0

0

1

1
1

1

1 1 0

SEAC-4 J.Teuhola 2016 41

Algorithm 4.1.

Shannon-Fano codebook generation

Input: Alphabet S = {s1, ..., sq }, probability distribution
 P = {p1, ..., pq }, where pi  pi+1.

Output: Decoding tree for S.

begin

 Create a root vertex r and associate alphabet S with it.

 If S has only one symbol then return r.

 Find j ( 0 and  q) such that and are
the closest.

 Find decoding trees r1 and r2 for the sub-alphabets
 {s1, ..., sj} and {sj+1, ..., sq} recursively and set them to
 subtrees of r, with labels 0 and 1.

 Return the tree rooted by r.

end

 

j

i ip
1  

q

ji ip
1

SEAC-4 J.Teuhola 2016 42

(5) (4)

0 0 1 1

{c,d}

 0.2

{c,d,e,f}: 0.4
1

{a,b}: 0.6

{a,b,c,d,e,f}: 1.0

0

b: 0.3

0 1

a: 0.3 {e,f}: 0.2 {c,d}: 0.2

0 1

{c,d,e,f}: 0.4
1

{a,b}: 0.6

{a,b,c,d,e,f}: 1.0

0

b:0.3

0 1

a:0.3

{e,f}: 0.2

0 1

c:0.1 d:0.1 e:0.1 f:0.1

(3) (2) (1)

{a,b,c,d,e,f}: 1.0

{a,b}: 0.6 {c,d,e,f}: 0.4

{a,b,c,d,e,f}: 1.0

0 1
{a,b}: 0.6

{c,d,e,f}: 0.4

{a,b,c,d,e,f}: 1.0

0 1

a: 0.3 b: 0.3

0 1

SEAC-4 J.Teuhola 2016 43

4.2. Huffman code

 Best-known source compression method.

 Builds the tree bottom-up (contrary to Shannon-Fano).

Principles:

 Two least probable symbols appear as lowest-level

leaves in the tree, and differ only at the last bit.

 A pair of symbols si and sj can be considered a meta-

symbol with probability pi+pi.

 Pairwise combining is repeated q-1 times.

SEAC-4 J.Teuhola 2016 44

Algorithm 4.2. Huffman codebook generation

Input: Alphabet S = {s1, ..., sq}, probability distribution
 P = {p1, ..., pq}, where pi  pi+1.

Output: Decoding tree for S.

begin

 Initialize forest F to contain a one-node tree Ti for each symbol si
and set weight(Ti) = pi.

 while |F| > 1 do

 begin

 Let X and Y be two trees with the lowest weights.

 Create a binary tree Z, with X and Y as subtrees
 (equipped with labels 0 and 1).
 Set weight(Z) = weight(X) + weight(Y).

 Add Z to forest F and remove X and Y from it.

 end

 Return the single remaining tree of forest F.

end

SEAC-4 J.Teuhola 2016 45

 Example of Huffman codebook generation

(1) (2)

1
0

1

1

0.3 0.3 0.1 0.1 0.1 0.1

a b c d e f

0.3 0.3 0.1 0.1 0.1 0.1

a b c d e f

0.2
0

0.3 0.3 0.1 0.1 0.1 0.1

a b c d e f

0.2
0 1

0.2
0 1

0.3 0.3 0.1 0.1 0.1 0.1

a b c d e f

0.2

0 1

0.2

0

0.4

1
0

1

0.3 0.3 0.1 0.1 0.1 0.1

a b c d e f

0.2
0 1

0.2
0

0.4

1
0.6

0

1 0

1

0.3 0.3 0.1 0.1 0.1 0.1

a b c d e f

0.2
0 1

0.2
0

0.4

1
0.6

0

1 0 1.0

(3) (4)

(5) (6)

SEAC-4 J.Teuhola 2016 46

Properties of Huffman code

 Produces an optimal codebook for the alphabet,

assuming that the symbols are independent.

 The average code length reaches the lower bound

(entropy) if for all i: pi = 2-k where k is an integer.

 Generally: H(S)  L  H(S)+p1+0.086, where p1 is the

largest symbol probability.

 The codebook is not unique:

(1) Equal probabilities can be combined using any

 tie-break rule.

(2) Bits 0 and 1 can be assigned to subtrees in either

 order.

SEAC-4 J.Teuhola 2016 47

Implementation alternatives of Huffman code

1. Maintain a min-heap, ordered by weight;

the smallest can be extracted from the root.

The complexity of building the tree: O(q),

inserting a metasymbol: O(log q); altogether O(q log q).

2. Keep the uncombined symbols in a list sorted by

weight, and maintain a queue of metasymbols.

 The two smallest weights can be found from these two

sequences

 The new (combined) metasymbol has weight higher than

the earlier ones.

 Complexity: O(q), if the alphabet is already sorted by

probability.

SEAC-4 J.Teuhola 2016 48

Special distributions for Huffman code

 All symbols equally probable, q = 2k, where k is integer:

block code.

 All symbols equally probable, no k such that q = 2k:

shortened block code.

 Sum of two smallest probabilities > largest:

(shortened) block code.

 Geometric (≈ negative exponential) distribution: pi = c·2-i :

codewords 0, 10, 110 , ..., 111..10, 111..11 (cf. unary

code).

 Zipf distribution: pi  c/i (symbols si sorted by probability):

compresses to about 5 bits per character for normal text.

SEAC-4 J.Teuhola 2016 49

Transmission of the codebook

 Drawback of (static) Huffman coding:

The codebook must be stored/transmitted to the decoder

 Alternatives:

 Shape of the tree (2q-1 bits) plus leaf symbols from left to right

(q log2 q bits).

 Lengths of codewords in alphabetic order (using e.g. universal

coding of integers); worst case O(q log2 q) bits.

 Counts of different lengths, plus symbols in probability order;

space complexity also O(q log2 q) bits.

SEAC-4 J.Teuhola 2016 50

Extended Huffman code

Huffman coding does not work well for:

 Small alphabet

 Skew distribution

 Entropy close to 0, average code length yet  1.

Solution:

 Extend the alphabet to S(n):

Take n-grams of symbols as units in coding.

 Effect: larger alphabet (qn), decreases the largest

probability.

SEAC-4 J.Teuhola 2016 51

Extended Huffman code (cont.)

 Information theory gives:
H(S(n))  L(n)  H(S(n)) + 1

 Counted per original symbol:
 H(S(n))/n  L  (H(S(n)) + 1)/n

 which gives (by independence assumption):

 H(S)  L  H(S) + 1/n

 Thus: Average codeword length approaches the entropy.

 But: The alphabet size grows exponentially, most of the
extended symbols do not appear in messages for large n.

 Goal: No explicit tree; codes determined on the fly.

SEAC-4 J.Teuhola 2016 52

Adaptive Huffman coding

 Normal Huffman coding: Two phases, static tree

 Adaptive compression: The model (& probability

distribution) changes after each symbol; encoder and

decoder change their models intact.

 Naive adaptation: Build a new Huffman tree after each

transmitted symbol, using the current frequencies.

 Observation: The structure of the tree changes rather

seldom during the evolution of frequencies.

 Goal: Determine conditions for changing the tree, and

the technique to do it.

SEAC-4 J.Teuhola 2016 53

Adaptive Huffman coding (cont.)

 Sibling property: Each node, except the root, has a

sibling (i.e. the binary tree is complete).

 The tree nodes can be listed in non-decreasing order of

weight so that each node is adjacent in the list to its

sibling.

 Theorem. A binary tree having weights associated with

its nodes, as defined above, is a Huffman tree if and only

if it has the sibling property.

Proof. Skipped.

SEAC-4 J.Teuhola 2016 54

Implementation of Adaptive Huffman coding

 Start from a balanced tree with weight = 1 for each leaf;
the weight of an internal node = sum of child weights.

 Maintain a threaded list of tree nodes in increasing order of
weight.

 Nodes of equal weight in the list form a (virtual) block.

 After transmitting the next symbol, add one to the weights
of nodes on the path from the correct leaf up to the root.

 Increasing a node weight by one may violate the
increasing order within the list.

 Swapping of violating node with the rightmost node in the
same block will recover the order, and maintains the
sibling property. Addition of frequencies continues from the
new parent.

SEAC-4 J.Teuhola 2016 55

Example of Huffman tree evolution

 Increase the weight of ’a’ from 1 to 2:

1 2

3 3

6 3

9

3 3 2 2

6 4

10

a b

x z

w y

r

y z a b

w x

r

SEAC-4 J.Teuhola 2016 56

 Example step in adaptive Huffman coding

a b

x z

w y

r

1 2

3 3

6 3

9

a b y z

w x

r

3 3 2 2

4 6

10

SEAC-4 J.Teuhola 2016 57

Notes about Adaptive Huffman coding

Modification:

 Start from an empty alphabet, and a tree with only a

placeholder.

 At the first occurrence of a symbol, transmit the

placeholder code and symbol as such, insert it to the

tree by splitting the placeholder node.

Further notes:

 Complexity proportional to the number of output bits.

 Compression power close to static Huffman code.

 Not very flexible in context-dependent modelling.

SEAC-4 J.Teuhola 2016 58

Canonical Huffman coding

 Goal: effective decoding

 Based on lengths of codewords, determined by the
normal Huffman algorithm.

 Chooses one of the many possible bit assignments for
codewords, e.g.

 Symbol Freq. Code I Code II Code III

 a 10 000 111 000

 b 11 001 110 001

 c 12 100 011 010

 d 13 101 010 011

 e 22 01 10 10

 f 23 11 00 11

SEAC-4 J.Teuhola 2016 59

Canonical Huffman coding (cont.)

Definition. A Huffman code is any prefix-free assignment
of codewords, the lengths of which are equal to the
depths of corresponding symbols in a Huffman tree.

Ordering of codeword values:

 From longest to shortest

 Same-length codewords have successive code values

 k-bit prefix is smaller than any k-bit codeword, i.e.
lexicographic order

Decoding needs:

 The first code value for each length.

 The symbol related to the i’th value within the same-
length codewords.

SEAC-4 J.Teuhola 2016 60

Algorithm 4.3.:

Assignment of canonical Huffman codewords

Input: Length li for each symbol si of the alphabet,

 determined by the Huffman method.

Output: Integer values of codewords assigned to

 symbols, plus the order number of each symbol

 within same-length symbols.

SEAC-4 J.Teuhola 2016 61

 begin

 Set maxlength := Max{li}

 for l := 1 to maxlength do

 Set countl[l] := 0

 for i := 1 to q do

 Set countl[li] := countl[li] + 1

 Set firstcode[maxlength] := 0

 for l := maxlength  1 downto 1 do

 Set firstcode[l] := (firstcode[l+1] + countl[l+1]) / 2

 for l := 1 to maxlength do

 Set nextcode[l] := firstcode[l]

 for i := 1 to q do

 begin

 Set codeword[i] := nextcode[li]

 Set symbol[li, nextcode[li]  firstcode[li]] := i

 Set nextcode[li] := nextcode[li] + 1

 end

end

SEAC-4 J.Teuhola 2016 62

1234

1236

nextcode

codeword

1236

1234

3

4

2

3

...

count

15

14

13

12

1

...

...

13

14

15

16

 A

0 1 2 3 ...

symbol

1236-1234 = 2

length

firstcode

Data structures for

canonical Huffman code

15

14

13

124

125

13

14

15

1235

15

14

13

SEAC-4 J.Teuhola 2016 63

Algorithm 4.4.

Decoding of canonical Huffman code.

Input: The numerical value of the first code for each codeword
 length, plus the symbol for each order number within the
 set of codewords of equal length.

Output: Decoded symbol.

begin

 Set value := readbit()

 Set l := 1

 while value < firstcode[l] do

 begin Set value := 2  value + readbit()

 Set l := l + 1

 end

 return symbol[l, value  firstcode[l]]

end

SEAC-4 J.Teuhola 2016 64

Properties of canonical Huffman code

 Small amount of memory for the model in decoding:

firstcode for each different length, and symbol table to

look up the symbol related to a codeword value.

 Decoding is very fast: no walking in the tree;

only a very simple loop for each transmitted bit.

SEAC-4 J.Teuhola 2016 65

Tunstall coding

 Goal: Variable-length substrings of the source are

encoded to fixed-length codewords.

 Assumption: Independence of symbols: probability of a

string = product of included symbol probabilities.

 Idea: For codeword length k, we try to find  2k

approximately equi-probable blocks of symbols.

 Restrictions:

1. It must be possible to parse any message using the selected

blocks.

2. The set of blocks has the prefix-free property.

 (1) and (2) together: The parsing trie must be a

complete q’ary tree.

SEAC-4 J.Teuhola 2016 66

Tunstall’s ideas

 Build a parsing trie where each parent-child relationship

represents a symbol.

 The symbols on the path from the root to a leaf represent

the block which is assigned a codeword.

 Each node has a weight = probability of related path.

 The number of leaves must be  2k.

 Build the trie top-down.

 At each step, extend the leaf having the highest weight

with q child nodes, one for each symbol.

SEAC-4 J.Teuhola 2016 67

Algorithm 4.5: Tunstall codebook generation

 Input: Symbols si, i = 1, ..., q of the source alphabet S,

 symbol probabilities pi , i = 1, ..., q, and the length

 k of codewords to be allocated.

 Output: Trie representing the substrings of the extended

 alphabet, with codewords 0, ..., 2k-u attached to

 the leaves (0  u  q  2), plus the decoding table.

SEAC-4 J.Teuhola 2016 68

begin

 Initialize the trie with the root and q first-level

 nodes, with labels s1, ... sq, and weights p1, ..., pq.

 n := 2k-q -- Number of remaining codewords

 while n  q  1 do

 Find leaf x from the trie having the biggest weight among leaves.

 Add q children to x, with labels s1, ... sq, and weights
 weight(x)p1, ..., weight(x)pq.

 Set n := n  q + 1

 end

 for each leaf li in preorder, i = 0, 1, 2, ... do

 Assign codeword(li) := i (using k bits).

 Denote path(li) = labels from the root to li.

 Add pair (i, path(li)) to the decoding table.

 end

end

SEAC-4 J.Teuhola 2016 69

Tunstall code example:

S = {A, B, C, D}, P = {0.5, 0.2, 0.2, 0.1}, k = 4, 2k=16

0000  AAA 0100  AB 1000  BB 1100  CB

0001  AAB 0101  AC 1001  BC 1101  CC

0010  AAC 0110  AD 1010  BD 1110  CD

0010  AAD 0111  BA 1011  CA 1111  D

A

0.5

A

0.25

A

0.125

A

0.1

A

0.1

B

0.2

C

0.2

D

0.1

B

0.1

B

0.04

B

0.04

C

0.04

C

0.04

C

0.1

B

0.05

C

0.05

D

0.02

D

0.02

D

0.05

D

0.025

SEAC-4 J.Teuhola 2016 70

Properties of Tunstall code

 Number of unused codewords:

 Average number of bits per input symbol:

 Not necessarily optimal

u q
q

k

k

  












 2 1

2 1

1
1()






Triepath

pathLengthpathP

kk

))()((lengthpath Average

