
SEAC-5 J.Teuhola 2016 101

5. Predictive text compression methods

Change of viewpoint:

 Emphasis on modelling instead of coding.

Main alternatives for text modelling and compression:

1. Predictive methods:

 One symbol at a time

 Context-based probabilities for entropy coding

2. Dictionary methods:

 Several symbols (= substrings) at a time

 Usually not context-based coding

SEAC-5 J.Teuhola 2016 102

Purpose of a predictive model

 Supply probabilities for message symbols.

 A good model makes good ’predictions’ of symbols to

follow.

 A good model assigns a high probability to the symbol

that will actually occur.

 A high probability will not ’waste’ code space e.g. in

arithmetic coding.

 A model can be static (off-line coding in two phases) or

dynamic (adaptive, one-phase coding)

SEAC-5 J.Teuhola 2016 103

(1) Finite-context models

 A few (k) preceding symbols (’k-gram’) determine the

context for the next symbol.

 Number k is called the order of the model.

 Special agreement:

k = 1 means that each symbol has probability 1/q

 A distribution of symbols is built (maintained) for each

context.

 In principle, increasing k will improve the model.

 Problem with large k:

Reliable statistics cannot be collected;

the (k+1)-grams occur too seldom.

SEAC-5 J.Teuhola 2016 104

Illustration of a finite-context model

Sample text:

“... compression saves resources ...”

Context Successor Prob

… … …

com e 0.2

com m 0.3

com p 0.5

… … …

omp a 0.4

omp o 0.3

omp r 0.3

… … …

SEAC-5 J.Teuhola 2016 105

(2) Finite-state models

 May capture non-contiguous dependencies between
symbols; have a limited memory.

 Are also able to capture regular blocks (alignments)

 Markov model

 Finite-state machine: states, transitions, trans.probabilities

 Compression: Traversal in the machine, directed by
source symbols matching with transition labels.

 Encoding based on the distribution of transitions leaving
the current state.

 Finite-state models are in principle stronger than finite-
context models; the former can simulate the latter.

 Automatic generation of the machine is difficult.

 Problem: the machine tends to be very large.

SEAC-5 J.Teuhola 2016 106

Finite-state model: The memory property

 Modelling of matching parentheses:

“ …(a+b)(c-d) + (a-c)(b+d)…”

States with low probability for ’)’ States with higher probability for ’)’

’(’

’)’

SEAC-5 J.Teuhola 2016 107

 (3) Grammar models

 More general than finite-state models.

 Can capture arbitrarily deep nestings of structures.

 The machine needs a stack.

 Model description: context-free grammar with

probabilities for the production rules.

 Automatic learning of the grammar is not feasible on

the basis of the source message only.

 Natural language has a vague grammar, and not very

deep nested structures.

 Note: XML is a good candidate for compressing using a

grammar model (implementations exist).

SEAC-5 J.Teuhola 2016 108

Sketch of a grammar model

 Production rules for a fictitious programming language,

complemented with probabilities :

 <program> := <statement>[0.1] |

 <program> <statement> [0.9]

 <statement> := <control statement> [0.3] |

 <assignment statement> [0.5] |

 <input/output statement> [0.2]

 <assignment statement> := <variable> ‘=‘ <expression> [1.0]

 <expression> = <variable> [0.4] |

 <arithmetic expression> [0.6]

 ……

SEAC-5 J.Teuhola 2016 109

5.1. Predictive coding based on fixed-length contexts

Requirements:

 Context (= prediction block) length is fixed = k

 Approximations for successor distributions

 Default predictions for unseen contexts

 Default coding of unseen successors

Data structure:

 Trie vs. hash table

 Context is the argument of the hash function H

 Successor information stored in the home address

 Collisions are rare, and can be ignored;
successors of collided contexts are mixed

 Hash table more compact than trie: contexts not stored

SEAC-5 J.Teuhola 2016 110

Three fast fixed-context approaches of

increasing complexity

1. Single-symbol prediction &

coding of success/failure

2. Multiple-symbol prediction of probability order &

universal coding of order numbers

3. Multiple-symbol prediction of probabilities &

arithmetic coding

SEAC-5 J.Teuhola 2016 111

A. Prediction based on the latest successor

Algorithm 5.1. Predictive success/failure encoding using fixed-length contexts.
Input: Message X = x1x2 ... xn, context length k, hashtable size m, default symbol d

Output: Encoded message, consisting of bits and symbols.

begin

 for i := 0 to m1 do T[i] := d

 Send symbols x1, x2, ..., xk as such to the decoder
 for i := k+1 to n do

 begin

 addr := H(xik ... xi1)

 pred := T[addr]

 if pred = xi

 then Send bit 1 /* Prediction succeeded */

 else begin

 Send bit 0 and symbol xi /* Prediction failed */

 T[addr] := pred

 end
 end

end

SEAC-5 J.Teuhola 2016 112

Prediction based on the latest successor:

data structure

Character string S

A B C D X Y Z

Y X Z

Hash function H

Hash table T

Prediction

blocks

SEAC-5 J.Teuhola 2016 113

B. Prediction of successor order numbers
Algorithm 5.2. Prediction of symbol order numbers using fixed-length contexts.

Input: Message X = x1x2 ... xn, context length k, hash table size m.

Output: Encoded message, consisting of the first k symbols and -coded integers.

begin

 for i := 0 to m1 do T[i] := NIL

 Send symbols x1, x2, ..., xk as such to the decoder

 for i := k+1 to n do

 begin

 addr := H(xik ... xi1)

 if xi is in list T[addr]

 then begin

 r := order number of xi in T[addr]

 Send (r) to the decoder

 Move xi to the front of list T[addr]

 end

 else begin

 r := order number of xi in alphabet S, ignoring symbols in list T[addr]

 Send (r) to the decoder

 Create a node for xi and add it to the front of list T[addr]

 end

 end

end

SEAC-5 J.Teuhola 2016 114

Prediction of successor order numbers:

the data structure

 Character string S

A B C D X Y Z

Hash function H

Hash table T

Prediction

blocks

Y

V

A

X

A

Z

W

A

Real

successor

lists

Virtual

successor

lists

SEAC-5 J.Teuhola 2016 115

C. Statistics-based prediction of successors

Algorithm 5.3. Statistics-based coding of successors using fixed-length contexts.
Input: Message X = x1x2 ... xn, context length k, alphabet size q, hash table size m.
Output: Encoded message, consisting of the first k symbols and an arithmetic code.

begin
 for i := 0 to m1 do

 begin T[i].head := NIL; T[i].total := q;
 Send symbols x1, x2, ..., xk as such to the decoder
 Initialize arithmetic coder

 for i := k+1 to n do
 begin

 addr := H(xik ... xi1)
 if xi is in list T[addr].head (node N)
 then F := sum of frequencies of symbols in list T[addr].head before N.

 else begin
 F := sum of frequencies of real symbols in list L headed by T[addr].head.

 F := F + (order number of xi in the alphabet, ignoring symbols in list L)
 Add a node N for xi into list L, with N.freq = .
 end

 Apply arithmetic coding to the cumulative probability interval
 [F / T[i].total), (F+N.freq) / T[i].total)

 T[i].total := T[i].total + 1
 N.freq := N.freq + 1
 end /* of for i := … */

 Finalize arithmetic coding
end

SEAC-5 J.Teuhola 2016 116

Statistics-based prediction of successors:

Data structure

Character string S

A B C D X Y Z

Hash function

H

Hash table

T

Prediction

blocks

3

2



2 X



A

4

3



Real

successor

lists

Virtual

successor

lists

V

Y

A

Z

W

A

Total frequency

Head of successor list (ptr)

SEAC-5 J.Teuhola 2016 117

5.2. Dynamic-context predictive compression

 (Ross Williams, 1988)

Idea:

 Predict on the basis of the longest context that has

occurred before.

 Context lengths grow during adaptive compression.

Problems:

 How to store observed contexts?

 How long contexts should we store?

 When is a context considered reliable for prediction?

 How to solve failures in prediction?

SEAC-5 J.Teuhola 2016 118

Dynamic-context predictive compression (cont.)

Data structure:

 Trie, where paths represent backward contexts

 Nodes store frequencies of context successors

 Growth of the trie is controlled

Parameters:

 Extensibility threshold (et  [2, ))

 Maximum depth (m)

 Maximum number of nodes (z)

 Credibility threshold (ct  [1, ))

Zero frequency problem:

 Probability of a symbol with x occurrences out of y: (,)
()

x y
qx

q y






1

1

SEAC-5 J.Teuhola 2016 119

Dynamic-context predictive compression:

Trie for “JAPADAPADAA ...”

A

[1,2,0,2]

D

[2,0,0,0]

J

[1,0,0,0]

P

[2,0,0,0]

A

[2,0,0,0]

A

[2,0,0,0]

D

[1,0,0,1]

J

[0,0,0,1]

P

[0,2,0,0]

A

[1,0,0,1]

A

[0,2,0,0]

P

[2,0,0,0]

D

[1,0,0,0]

J

[1,0,0,0]

SEAC-5 J.Teuhola 2016 120

Using the previous trie

 Assumed continuation: “JAPADAPADAA | DA …”

 Parameters: q=4, ct=1

 Successor ‘D’:
 Longest downward path in the trie: A[1,2,0,2] which is credible

 Successor prob’s: P(‘A’)=5/24, P(‘D’)=P(‘P’)=9/24, P(‘J’)=1/24

 Inf(‘D’) = -log2(9/24)  1.415 bits

 Node update: A[1,2,0,2]A[1,3,0,2]

 Insert new node: A-A[0,1,0,0]

 Successor ‘A’:
 Longest credible path: D-A[2,0,0,0]

 Probability of successor ‘A’ = 9/12, Inf(‘A’) = -log2(3/4)  0.415 bits

 Node updates: D[2,0,0,0]D[3,0,0,0], D-A[2,0,0,0]  D-A[3,0,0,0],
Insert new node D-A-A[1,0,0,0]

SEAC-5 J.Teuhola 2016 121

Dynamic-context predictive compression:

The algorithm

Algorithm 5.4. Dynamic-context predictive compression.

Input: Message X = x1x2 ... xn, parameters et, m, z, and ct.

Output: Encoded message.

begin

 Create(root); nodes := 1;

 Initialize arithmetic coder

 for i := 1 to q do root.freq[i] := 0

 for i := 1 to n do

 begin

 current := root; depth := 0

 next := current.child[xi1] /* Assume a fictitious symbol x0 */

 while depth < m and next  NIL cand next.freq  ct do

 begin

 current := next

 depth := depth + 1

 next := current.child[xidepth1]

 end

 arith_encode((current.cumfreq[xi1], current.freqsum),

 (current.cumfreq[xi], current.freqsum))

SEAC-5 J.Teuhola 2016 122

Dynamic-context predictive compression:

The algorithm (cont.)

 {Start to update the trie }

 next := root; depth := 0

 while next  NIL do

 begin

 current := next

 current.freq[xi] := current.freq[xi] + 1

 depth := depth + 1

 next := current.child[xidepth]

 end

 /* Continues … */

SEAC-5 J.Teuhola 2016 123

Dynamic-context predictive compression:

The algorithm (cont.)

 /* Study the possibility of extending the trie */
 if depth < m and nodes < z and current.freqsum  et

 then begin

 new(newnode)

 for j := 1 to q do

 begin
 newnode.freq[j] := 0

 newcode.child[j]

 end

 current.child[xi-depth] := newnode

 newnode.freq[xi] := 1
 nodes := nodes + 1

 end

 end

 Finalize arithmetic coder

end

SEAC-5 J.Teuhola 2016 124

Test results

Text type Source size Bits per symbol

English text (Latex) 39 836 3.164

Dictionary 201 039 4.081

Pascal program 20 933 2.212

• The results are rather good, but not the best possible.

• Reason: only the longest credible contexts are used;

 if prediction fails, the shorter contexts could succeed.

