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Abstract: In this paper, we describe the architectural output of our ‘Moving threads realization study’ 

(MOTH) project, which is a RISC-based multicore architecture framework. Each fraction of the memory can 
be accesses only via a certain core, via its cache memory. This approach leads to moving light-weight 
threads but at the same time provides strong memory coherences as no main memory location is replicated 
to several caches. We describe the overall multicore architecture, but special emphasis is put on describing 
the functionality of individual RISC-based core. 
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INTRODUCTION 
Previously in [8] we outlined a RISC-based architecture for our moving threads 

approach that has been the focus of MOTH project1. We have also studied non-RISC 
based solutions [3]. The goal in these studies is to construct processor core solutions that 
support easy-to-use programming approach based on the PRAM model (Parallel Random 
Access Machine) [4]. We aim to follow the PRAM model more closely than was done in the 
ParaLeap project [10]. 

In this paper, we describe the overall multicore architecture, but special emphasis is 
put on describing the functionality of individual RISC cores. A simulator and a compiler [6] 
also exist for this experimental architecture, but those are not discussed in this paper. 

 
RISC-BASED ARCHITECTURAL FRAMEWORK FOR MOVING THREADS 
Multicore System 
An overview of our architectural framework is shown in Fig. 1. The system consists of 

c RISC-based cores, an interconnection network between the cores, and a main memory 
system. Each core maintains a set of threads, can execute instructions from those, send 
and receive threads via the network, and has a cache memory for accessing a part of the 
main memory. Each core Ci “sees” a unique fraction of the main memory via its data cache 
– such memory locations are called local to Ci. Thus, if a thread residing at core Ci issues 
a memory instruction concerning some memory location local to core Cj, then the thread 
must be moved to Cj before executing the instruction. Moving a thread basically means 
moving the contents of its registers and program counter. The program, being executed by 
a thread to be moved, is not moved, since each core has an instruction cache, which 
contains fractions of all program codes being executed by the threads residing at that core. 

Each memory location is local to only one core. Thus, there are no consistency 
problems, since there is no real replication of the contents of memory locations. Each 
memory location can be cached. The data caches of cores act as root access points into 
the main memory. In the framework, we do not specify how the main memory is organized 
– e.g. it can be partitioned into blocks. We neither do fix the organization of the memory 
hierarchy – there can be multiple levels of caches. The mapping of memory locations into 
cores is not fixed in our architectural framework. We expect such a mapping to be 
balanced, but leave it open whether the mapping is static or dynamically set by the 
executed programs. 
--------------------------------------------------------------------------------------------------------------------------------------------------- 
1 This work was supported by the grants 128729 and 128733 of the Academy of Finland. 
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Fig. 1 Overview of our multicore system 

 
We explain the basic function of a core next. Each core maintains a dynamically 

varying set of threads by storing their register values in a register file and maintaining other 
information regarding them in a thread pool. A core extracts instructions from the threads 
(by using their program counter value) in its thread pool and injects such instruction into its 
instruction execution pipeline. None of instruction in the pipeline is a non-local memory 
instruction. The nature of next instruction is determined at the end of execution pipeline – 
thus, the need to move a thread is determined as early as possible. 

The network connecting the cores is for moving threads between the cores. Thus, 
each core has separate thread buffers for sending and receiving threads. The received 
threads are moved into the thread pool of the receiving core, and respectively sending 
means removing a thread from the pool of the sending core. 

In the framework, we do not specify any exact topology for the interconnect. 
However, we assume the network between the send and the receive buffers to consist of a 
number of intermediate nodes whose connections form a DAG (from the send to the 
receive buffers). We assume the throughput of the network to be such that each node can 
send and receive a thread approximately every δ cycles. We denote by TL the average 
latency (in cycles) of moving a thread in the network from one core to another. Moreover, 
we assume that δ is some small constant, independent of c. There exists various such 
sparse networks, e.g. the butterfly, mesh of trees, and various sparse meshes. 

The execution of all threads in the whole system is synchronous. The strict 
interpretation of PRAM execution is that all threads execute synchronously stepwise – 
meaning that there is implicit synchronization after each step (i.e. atomic instruction). A 
relaxed interpretation is that there is a separate synchronization instruction in the 
instruction set, and encountering such an instruction in the execution is treated as a barrier 
synchronization point (all threads pass over a barrier when all the threads have reached 
it). The instructions of a thread between two barriers can be called as a superstep (notice 
that the length of superstep does not need to be static). The approach to the nature of 
execution synchrony is very crucial considering the semantics of programs and ease of 
programming. It is obvious that the more strict synchrony the easier to program but the 
more costly to implement. In our architectural framework, we do not specify how often the 
threads are synchronized, but we fix the architectural method of keeping the threads in 
synchrony. Our method is the synchronization wave method which can be seen to have 
been outlined already in the Fluent machine [9]. The idea of synchronization wave is that a 
wave front separates two consecutive (super)steps. The wave front moves over an 
element (whether an interconnection node or an element related to the execution pipeline 
of a core) once it has arrived into the element via all input “links”. Moving over a node 
means that the wave front is forwarded to all possible output “links” of the node. 

 
Architectural framework for a single core 
The bedrock of our thread processor model is a pipelined RISC architecture. The 

major change to the basic 5-stage textbook model is the adoption of the moving threads; 
the address space is distributed among all cores, and a thread move occurs when the next 
instruction in the control flow refers to a non-local memory address or performs a special 
thread control instruction. This makes it necessary for an efficient implementation to pre-
calculate the address of a reference before execution. Another difference is the 
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reorganized pipeline feeding technique, which achieves fine-grained thread level 
parallelism by alternating the executable thread between pipeline stages instead of 
executing instructions in coarse-grained blocks from a same thread at a time. 

The core operational flow comprises six pipeline stages: select, decode, execute & 
fetch next, writeback & predecode, address calculation, and data memory access (Fig. 2, 
Tab. 1). The seventh stage, data buffering, is an independent background task running 
concurrently with the main pipeline. Each pipeline stage has been balanced to execute in 
one cycle, which results in instruction completion time of at least eight cycles. In case of 
instruction / data cache miss, a NOP placeholder operation is executed and in case of data 
cache miss, the thread’s status remains unavailable until the data is available. 
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Fig. 2 The pipeline stages of the processor core 

 
Instruction 
select 

The first pipeline stage selects the next available thread for execution from the thread 
table. The table is organized as rows comprising three fields: status, program counter 
value, and a preloaded next instruction. While a more realistic implementation might 
require banking or a tree like selection logic, our model uses a simple linear array. The 
status field represents seven possible thread states (Fig. 3); free – empty slot where 
threads can be assigned, ready – ready to be selected for execution, exec – being 
processed in the pipeline, wait – execution is blocked by a pending data memory 
request, sync – waiting for the next sync point before executing, move & recv – the 
thread table is sending/receiving thread data from the I/O buffers. A search is performed 
every cycle to feed the pipeline with the program counter, instruction, and row id values 
of an available entry from the thread table (Fig. 4) and a placeholder NOP is executed if 
the search fails. 

Instruction 
decode 

The second stage decomposes the prefetched instruction, extracts a possible immediate 
value, concurrently issues register file fetches, and calculates the new program counter 
value from this data. Basic RISC instructions require two dedicated register file read 
ports for decoding, one for predecoding, and a variable amount of extra ports for thread 
moves. Wider data type support (e.g. SIMD, MADD/MSUB instructions) increases the 
requirements. The instruction data, program counter, thread row id, register and 
immediate values are passed to the next pipeline stage. 

Execute and 
fetch next 
instruction 

The third stage executes the decoded instruction and performs two fetches, one from the 
instruction cache and other from the data buffer. The data buffer is guaranteed to hold 
the correct data in the slot indexed by the thread row id, but an instruction fetch miss is 
hidden with a placeholder NOP with a program counter value decremented by four to 
repeat the failed fetch. The fetched data & instruction values along with the result of the 
ALU operation from the immediate and register values are fed to the next pipeline stage. 

Write back and 
predecode 

The fourth stage ends the instruction execution by either writing the result to the register 
file or to a memory location. A full write operation might take place asynchronously, but 
the synchronous part is assumed to finish during the stage. Basic instructions require 
one dedicated register file write port or if hardware MULT/DIV are supported, two ports. 
The predecoding concurrently initiates the execution of the next instruction by decoding 
the instruction. If the next instruction is a load or store using a reference calculated from 
a register value, that register value is fetched via a dedicated read port. The instruction 
data along with the address value components are fed to the next pipeline stage. 

Calculate 
address and 
access data 
memory 

The last two pipeline stages check with a hardcoded hash function whether the next 
instruction is accessing the local memory or if the thread needs to move to another core, 
and update thread state accordingly to move or sync. A local reference is also 
propagated to the data cache queue in the latter stage. The select and table control unit 
initiates a thread move in the background and changes the thread status to free when 
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the thread’s register values have been completely copied to the transmission queue. The 
details of the thread move have been omitted from the Fig. 4. 

Buffer data The data memory requests performed in the last stage are added to the data cache’s 
queue. After processing the request, the cache stores the result in one of its two pipeline 
registers along with the accompanying requesting thread row id. The data buffer unit 
reads these values via two input ports and updates the values in a single cycle. The data 
cache also signals the select and table control unit with the thread’s row id associated 
with the data. The unit then updates the status of the row from wait to ready. The latency 
of this operation depends on which point of the memory hierarchy the data is fetched. 

Thread 
management 

A fork–join concurrency model is adopted by the hardware; new threads are created with 
a fork instruction before a parallel section and combined with a join instruction into a 
single control stream after the section. The end of the section acts as an implicit barrier 
synchronization. Nested parallel sections are also supported, but expect software 
support. The thread forks and joins use a distributed two phased instruction model to 
support inexpensive coordination of a high number of threads; the thread operations are 
initiated with a broadcast packet and executed locally by all cores. The first thread 
operation creates a local coordinator thread for generating and managing the lifetime of 
the generated child threads and the same coordinator thread is used to propagate back a 
single join operation to the original parent thread. The child thread register values are 
clones of the parent thread's registers modulo the thread id value and the special register 
values for storing the cores of the coordinator and parent threads. The parent thread is 
unavailable during the parallel block, but the last join message from the child threads 
wakes it up again for the following sequential control flow section. 

Tab. 1 The flowchart of the threads states 
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Fig. 3 The flowchart of the threads states 
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Fig. 4 The datapath model of the processor core 
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EVALUATION 
We evaluated the performance of the proposed processor by simulating the 

execution of four simple benchmarks (see Tab. 2) in 3 moving threads configurations 
having 4, 16 and 64 processor cores, applying initial synchronization wave implementation 
(see Tab. 3), and ideal PRAM having the same configuration. 

 
Name Description 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
aprefix Compute ordered multiprefix of a table of T integers 
block Copy an array of 32T integers distributed across the processor storage modules to another array in parallel. 
max Compute the maximum of a table of T words in parallel 
spread Spread an integer to the all T elements of a table 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Tab. 2 Benchmark programs 
 

Configuration     M4    M16    M64 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Number of processors    4    16    64 
Maximum number of threads   1024    4096    16384 
Size of data memory (MB)   4    16    64 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Tab. 3 Moving thread system configurations 
 

The simulations were performed in our IPSMSim simulation environment modified for 
moving threads and mimicking the behavior of the RISC-based processor as closely as 
possible and adopting the network and buffering mechanisms form the Moving Threads 
Eclipse system [3]. The programs were written in e-language, and compiled with ecc 
optimization settings -O2. From each simulation we recorded the execution time of the 
benchmark algorithm itself, percentage of thread moves and the maximum length of FIFOs 
reflecting the packing of threads to a single processor core. Fig. 5 shows the e code for 
aprefix, its equivalent in MOTHC language [7], and the result of the compilation. The 
results of measurements are shown in Fig. 6. 

 
li     v0,0x8000
fork v0
forkl
lui    a1,0x0
move v1,k1
addiu a1,a1,140
sll    a0,v1,0x2
addu a0,a0,a1
sw     v1,0(a0)
join
joinc
fork v0
forkl
li     a2,15
li     v0,1

subu a3,v1,v0
sll    t0,a3,0x2
addu t0,t0,a1
bltz a3,0x74
addiu a2,a2,-1
lw     t0,0(t0)
lw     a3,0(a0)
addu a3,t0,a3
sw     a3,0(a0)
bnez a2,0x50
sll    v0,v0,0x1
join
joinc
jr     ra
move v0,zero

#include "e.h"
#define size 32768
int source_[size];
int main()
{

int i;
source_[_thread_id] = _thread_id;

// Logartihmic algorithm for block sum
for_ ( i=1 , i<_number_of_threads , i<<=1 ,

if (_thread_id-i>=0)
source_[_thread_id] 

+= source_[_thread_id-i]; );
return 0;

}

#include "moth.h"
#define size 32768
int source[size];
int main(void) {
int i;
pardo( t, size,
source[t] = t;

)
pardo( t, size,
for ( i=1; i < size; i<<=1)
if (t-i>=0) source[t] += source[t-i];

)
}

 
Fig. 5 E code, MOTHC code and result of compilation for the aprefix benchmark 

 
We can make the following observations from the results: 

• The performance of moving threads systems scales well but not ideally with respect to 
the number of processor cores. This because the configurations feature a fixed number of 
threads decreasing the relative chances to hide the latency. 
• The overall performance of this system is clearly lower that that of the MTPA-based 
system because there is no support for continuing execution of moved instruction without a 
restart, the chaining of functional units, concurrent memory access, nor multioperations.  
• The execution overhead with respect to a PRAM system with ideal memory system was 
between less than 1% and 41%, and increased as the number of cores increased. This 
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happens because the average number of threads per processor core stays the same 
although the actual latency of the network increases as a function of the number of cores. 
 

    

    
Fig. 6 The execution time, overhead with respect to ideal PRAM, percentage of  

      moves and maximum length of FIFO buffers of the benchmarks 
 

CONCLUSIONS 
We have proposed a RISC-based architecture for the moving threads approach. Our 

contribution focus on explaining the new kind of pipelined execution model for 
multithreaded RISC-based architecture and outlining a fork—join based parallel 
programming model. According to our evaluation, the performance of the systems scales 
well as the number of cores increases. 
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