
SMASim: A Cycle-accurate Scalable Multi-core
Architecture Simulator

Jari-Matti Mäkelä and Ville Leppänen ∗

Abstract— The computer industry has tried to mit-
igate the problem of achieving computationally more
efficient hardware on three fronts: increasing the ex-
ecution speed by increasing the operating frequency,
decreasing the amount of required time to issue a sin-
gle instruction by enhancing instruction level paral-
lelism (ILP), and increasing the “computational vol-
ume” by adding more computational units. Devel-
oping complete physical architectures or even exper-
imental FPGA prototypes has turned out to be ex-
pensive and to require relatively great amount of re-
sources. Software archtitecture simulators are seen as
an efficient way of lowering these costs.

SMASim is a software based simulator, motivated by
an experimental moving threads architecture that at-
tempts to lower the costs of rapidly designing new
architectures. It is based on a general purpose, cycle-
accurate event-driven message passing framework be-
tween the described hardware architecture elements.
Its relatively simple cost model captures the essential
properties of many hardware designs. The simula-
tor’s design allows easy monitoring of the system and
provides execution performance comparable to other
cycle-accurate hardware simulators.

The focus on SMASim has been to speed up declar-
ing new target architectures with expressive domain
specific notations and to decrease the amount of de-
sign errors with the static type checker of the imple-
mentation language. As a result, the implementation
supports modular architecture descriptions on vari-
ous granularity levels. A graphical user interface is
provided to simplify the task of modifying parame-
ters of a simulated system and to provide interactive
feedback.

Keywords: multi-core, simulator, cycle-accurate, do-

main specific language

1 Introduction

As the performance requirements of modern software
have steadily increased, the computer industry has faced
a constant need for more efficient hardware to perform
these tasks. Previous generations of microchips have

∗This research has been funded by the Academy of Finland
project numbers 128729 and 128733. University of Turku, De-
partment of Information Technology Joukahaisenkatu 3-5 B, 20520
Turku, Finland; E-mail: {jmjmak, ville.leppanen}@utu.fi

tried to mitigate the problem on three fronts: (i) in-
creasing the amount of executed instructions per time
unit by increasing the operating frequency, (ii) decreas-
ing the amount of required time to issue a single instruc-
tion (CPI) by enhancing instruction level parallelism, and
finally (iii) growing the “computational volume” by in-
creasing amounts of computational units.

During the last few years the first two approaches have
reached the point of diminishing returns and the oper-
ating frequencies have stabilized. Complex ILP mecha-
nisms begin to occupy on-chip space in ways that make
multi-core solutions appear more feasible. The amount
of parallelism on instruction level is also limited by data
dependencies. Another physical limitation is the power
dissipation of the processor, which has increased over the
years and pushed the requirements for efficient cooling
system even further.

The third approach has started a new era of multi-core
and multi-processor parallel programming. Several ven-
dors have provided their first revisions of multi-core ar-
chitectures. Efforts that stand out from the traditional
von Neumann model seem to yield most promising per-
formance improvements. Developing new hardware ar-
chitectures has turned out to be expensive and requires
relatively great amount of resources even when building
experimental FPGA prototypes.

SMASim is a pure software based simulator, motivated
by an experimental multi-core moving threads architec-
ture [9] that is based on a virtual parallel random access
machine (PRAM) [3, 4] model and differs from contem-
porary designs regarding the thread abstraction and han-
dling. It attempts to lower the costs of rapidly designing
new architectures by supporting new multi-core architec-
tures at various abstraction levels. The software and its
component libraries were originally built as a rapid de-
velopment tool for the architecture description and for
measuring its performance. The modular design was later
extended to also support other kinds of architecture mod-
els.

The simulator uses a cycle-accurate event-driven simu-
lation core. Its relatively simple cost model captures
the essential properties of many hardware designs. The
simulator’s design allows easy monitoring of the system



and provides execution performance comparable to other
cycle-accurate hardware simulators with high accuracy
typical to the cycle-free simulators.

The simulator is implemented in hybrid object-functional
language Scala[7]. The flexibility of Scala allows using
more declarative domain specific notation when specify-
ing parts of the architecture, yet provides static verifica-
tion of the model via a strong type system. The name
SMASim has two meanings — the simulation is built in
Scala and also adapts the Scala’s idea of a scalable lan-
guage. Components built on SMASim have the flexibility
of a modern general purpose language and can be imple-
mented in a declarative manner.

The core framework and building blocks of the simulator
are tuned for high performance and to minimize memory
allocations. However due to limitations of Java virtual
machine and strict sequential cycle-accurate execution,
some performance is sacrificed for other high level fea-
tures.

2 Related work

Architecture simulators are a widely studied subject. The
implementations can be roughly split into two categories,
based on their focus on functionality or performance.
Most of the existing work encompasses a simulator core
built in some high-performance, low-level systems pro-
gramming language and a target architecture description
either written in some declarative markup language or
using the same core language. Typically, the simulators
have mainly focused on existing commercially available
single-core architectures.

2.1 Cycle-accurate simulators

The list of traditional cycle-accurate simulators is long.
Probably the best known simulator is the SimpleScalar
[1] project, which has already reached its fourth version.
SimpleScalar allows defining single-core system with a
definition language. Another widely used simulator is
SESC [8], which uses C++ to model the architecture.
PTLSim [10] and Bochs [6] simulate the x86 architecture.

2.2 New generations

More recently, the focus has been on more efficient sim-
ulations that either sacrifice the cycle-accuracy by intro-
ducing some statistical measurement based on random
sampling or implement advanced techniques for speeding
up the event based system.

For instance, FaCSim [5] uses three methods to increase
its speed: chunked pipeline events, caching of decoded
instructions, and parallelization of the simulator. A
lesser known simulator, tsim, takes advantage of a mech-
anism called two-phase trace-driven simulation (TPTS)
[2]. This technique may bring two orders of magnitude

larger simulation speed and shrink the memory consump-
tion over 90%.

2.3 Implementation

The structure of SMASim is divided into independent
subsystems which are described in more detail below.

2.4 Message passing core

The core of SMASim is an event-driven message passing
system. Each relevant entity on various abstraction lev-
els in the simulated target architecture correspond to an
object in the architecture model. A set of event handlers
is associated with each active entity in the system. The
purpose of the handlers is to control the dynamic data
and control flow via data dependencies and event laten-
cies.

The simulator’s operation is execution driven. It pro-
vides a cycle-accurate simulation of the whole architec-
ture. The runtime behavior is exact and emulates the ac-
tual hardware, although at a loss of runtime performance.
The runtime cost is proportional to the amount of simul-
taneous active messages, not to the component count of
the simulated system. Recent studies [2] and [5] have
shown that the execution speed could be improved dras-
tically by parallelizing the simulation code, using statis-
tical sampling, and dynamic translation. Since SMASim
still requires time to mature as a technology, we have
focused more on its flexibility.

The distinguishing feature of SMASim is to leverage (i)
the implementation language’s type system to enforce
modularity, safety, and reliability of the simulation and
(ii) the language’s flexible syntax to build a domain spe-
cific language notation to improve readability and pro-
ductivity.

The event handlers resemble pure functional building
blocks with well-defined input and output interfaces. The
type checker can thus statically guarantee the lack of in-
compatibilities between components. The handler’s ab-
stract interface allows arbitrary connections between the
components. Although the simulator’s core only provides
a simple DSL-like notation for the event handlers, the tar-
get architecture’s description language can be extended
with new notations provided by the subsystems described
in the next section.

The core architecture supports pluggable runtime mon-
itors. The mechanism follows the C language’s tradi-
tion of only paying for what one actually uses. In other
words, this allows flexibly adjusting the amount of run-
time checks made and statistics gathered during the sim-
ulation. The monitoring framework is discussed in more
detail in Section 2.6.

To illustrate the simplicity of composing architecture de-



scriptions, the following example in Figure 1 presents the
construction of a 4-port logical AND gate from three 2-
port AND gates defined in the same example. The ex-
ample also discreetly reveals how components implicitly
connect to the event system for convenience. The corre-
sponding code follows in Algorithm 1.

Figure 1: Construction of a 4-port logical AND gate from
three 2-port AND gates.

Algorithm 1 Implementation of the 4-port logical AND
gate from three 2-port AND gates.

implicit val clock = ControllerClock @> 100 Hz

class LogicalComponent extends SimpleComponent {
type B = Boolean
} // also implicitly connects to the clock above

class AND extends LogicalComponent {
def execute = value { (A: B, B: B) ⇒A & B }
}

def createAND = new AND execute

class Four Port AND extends LogicalComponent {
def execute = fun { (a: B, b: B, c: B, d: B) ⇒
((a,b) ⇒: createAND,
(c,d) ⇒: createAND) ⇒: createAND

}
}

2.5 Subsystem libraries

The simulator is accompanied by a set of subsystem li-
braries. The current set of libraries includes basic compo-
nents for building CPUs and their internals, multi-level
memory hierarchies with cache units, black-box interpro-
cessor networks, and a subset of MIPS32 R© instruction
set, extended with moving threads architecture specific
thread fork/join instructions.

The driving force behind the provided libraries and the
whole simulator has been the goal of implementing a soft-
ware simulator for a novel moving threads based multi-
core architecture [9]. As both, the architecture and the
simulator, mature, the libraries will be suplemented with
a larger set of general purpose components.

CPU subsystem The CPU subsystem contains func-
tionality for decoding and encoding instruction streams
and loading binary images from the file system. It also

provides components for defining simple CPUs, instruc-
tion sets, and registers files. Ideally the framework pro-
vides all low-level facilities for loading programs, and the
responsibility of choosing an instruction set and execu-
tion pipeline configuration is delayed to the target archi-
tecture description.

Memory subsystem The memory subsystem provides
components for modeling various kinds of basic memory
hierarchies. Currently supported are memory compo-
nents with a fixed latency property, memory banks com-
prising other storage components, simple multi-level di-
rectly mapped or N-way associative cache components.
Memory components often have a differing operating fre-
quency, which is naturally supported via the clock system
of the framework.

As an example of memory component usage, the code
listing in Algorithm 2 shows an interface used when con-
structing cache components.

Algorithm 2 N-way set associative cache constructor
interface.

class CacheNWaySetAss(
fetchLatency: Int,
signalingLatency: Int,
cacheSize: Int, // in bits
rowSize: Int, // in bits
setSize: Int, // in bits
maxBlockSize: Int,
concurrentReadCount: Int,
concurrentWriteCount: Int,
concurrentReadWriteCount: Int,
source: SignalingMemoryComponent

) extends SignalingMemoryComponent

Network subsystem The network subsystem is much
simpler than the other subsystem. The reason is that
the network is currently modeled only as a black-box in
the moving threads architecture description. The subsys-
tem thus provides a simple buffered network nodes and
a star shaped network topology with a constant latency
property and broadcast functionality.

MIPS32 subsystem As an extension to the CPU sub-
system, the MIPS32 R© subsystem provides a framework
for defining or extending MIPS-like instruction sets with
the help of a statically constrained domain specific lan-
guage. Also encoders, decoders, and full semantic defini-
tions are provided for a set of 69 core arithmetic, logic,
and memory instructions. The set currently lacks signal-
ing, atomic and floating point operations.

The instructions use a five stage pipeline abstraction for
semantics and the actual implementation is left open.



The provided abstraction makes other RISC instruction
sets or subsets of MIPS32 R© trivial to implement. As an
example, the Algorithm 3 clarifies the pipeline connection
with imaginary pipeline semantics. A set of instruction
mnemonics and an assignment operator (:=) are given to
encourage the use of domain specific notations and to cut
down the number of potential subtle bugs.

Algorithm 3 Instruction template

object X extends InstructionGenerator(TypeICmd(id) {
override def loadMemory = (Address(1), 4, :Int ⇒. . .)
override def loadRegisters = List(rs ⇒rs, . . ., hi ⇒hi)
override def execute {
rt := pc + rs
}
override def storeRegisters = List(rt ⇒rd, . . ., lo ⇒lo)
override def storeMemory = (Address(2), 4, 65535)
})

A more practical example is given in Algorithm 4. First,
a logical AND operator is defined and later two trivial
instruction sets are constructed from the instruction.

Algorithm 4 AND instruction and the associated in-
struction set.

object AND extends InstructionGenerator(
new SpecialCommand((4 << 3) + 4) {
override def execute = rd := rs & rt

})

object AddInstructionSet extends InstructionSet(AND)

val ZeroInstructionSet = AddInstructionSet − AND

Serializing and deserializing As an example of in-
structions deserialization, the simulator ships with a min-
imalistic simple disassembler, inspired by the GNU obj-
dump. Algorithm 5 shows the main steps modulo error
handling required to build a similar tool. Additionally,
the tool also re-encodes the instruction stream and writes
it to another file.

Algorithm 5 Instruction serialization and deserializa-
tion

import core.instructions.InstructionEncoder
import arch.mips32.MIPS32Decoder

val program = MIPS32Decoder load "/tmp/input.bin"

val insStream = MIPS32Decoder decode program
val program2 = InstructionEncoder encode insStream
InstructionEncoder save ("/tmp/output.bin", program2)

for (i ←instructionStream)
println(i)

2.6 Monitoring framework

The modular clock system of the simulation framework
allows plugging arbitrary amount of runtime monitors to
the message passing core. The feature can be used to
construct a trace of events executed in the system, which
can possibly played back at some point later. However,
it can also be used by higher level components to extract
very specialized data from the stream of events.

The library provided features of the simulator are accom-
panied with correnponding monitoring subsystems. This
way the monitoring is implicitly available for each sub-
system, but for performance reasons has to be explicitly
enabled during the initialization of the simulation. The
monitors can also be connected to the user interface for
interactive and real-time execution monitoring. The ra-
tionale behind the existing monitors was to ease the eval-
uation of the simulated architecture and to better tune
the CPU parameters. The monitors also support com-
mand line output.

Execution monitor A very basic monitor for monitor-
ing the execution of various commands is provided in the
monitoring framework. The mechanism is low level and
is mostly useful for constructing other monitors or de-
bugging the low level operation of the framework or the
system used in the simulation. By default it just accumu-
lates a textual execution history based on the captured
events

The monitor works by connecting to a controller clock as
a proxy. The simulation is told to use the monitor in place
of the original controller clock. Most monitors can be
chained in this fashion as if they were fully transparent.
A logical setup with one execution monitor is described
in Figure 2.

ExecutionMonitor ControllerClock
proxy

Clock1

Clock2

Clock3

Componen t1

Componen t2

Componen t3

Figure 2: Simple execution monitor setup.

Derived monitors The message passing system forms
the main communication infrastructure inside the sim-
ulator. It separates functional units (components) from
each other. One can always build custom mechanisms for
monitoring programs, but the generic execution monitor
interface often suffices. One advantage of the built-in
monitoring system is that it is pluggable and thus also
separated from other concerns in the simulator’s design.

The execution monitor is triggered by three kinds of
events: clock ticks, executable enqueuing and execution.



Figure 3: Core monitor for the moving threads architecture.

If we want to monitor a simulated component, the idea
is to use this interface to find changes in the state of the
system. The component model should be fine-grained
enough for the monitoring system to be able to capture
relevant information during the simulation. The compo-
nents can also comprise internal state that can be moni-
tored in this context.

Usually the tick interface is used to determine, how many
cycles have elapsed since the last timestamp or since the
beginning of the simulation. On the other hand, pattern
matching can be used to pick messages relevant to the
monitor from the stream of new events.

Cache monitor The cache monitor can be attached to
a memory cache unit. During the simulation the cache
monitor collects information about cache accesses, hits,
and misses. Cache hit ratio and latency characteristics
are computed from the monitored data at any point of
time. Cache statistics are also collected from the begin-
ning of the simulation until the last status query. All
caches in the target architecture connected to the con-
troller clock will be monitored and the output will group
the cache events by a cache name.

Network monitor A network monitor traces the
packet traffic on the inter-processor network or more gen-
erally any kind of data moving within a generic network
abstraction. The latencies of packet transmissions and
amount of packets and bytes transferred from node to
node are being monitored. All networks implementing
the network abstraction connected to the controller clock
will be monitored and the output will group the network
traffic by a network name.

Core monitor For the moving threads architecture,
the simulator also provides an experimental general core
monitor. The monitor simultaneously shows the state of
all internal registers, the threads in execution, in thread
queue and the thread packets in various inter-processor
network buffers. A snapshot of the simulation state via
the core monitor in an imaginary 5-core system is shown
in Figure 3.

2.7 Graphical user interface

The simulator can be controlled with a graphical user
interface. The default user interface is drawn using the
Java’s Swing framework. The interface provides function-
ality for:

• configuring the various subsystems in the architec-
ture model,

• loading executable binaries from the file system,

• controlling and exporting the simulation state,

• observing the state of the subsystems, the simulation
trace, and the gathered statistics, and

• miscellaneous utility functions such as disassembling
the binaries or displaying instruction sets.

For easy customizability, all user interface components
can be extended and replaced with the expressive lan-
gauge. The framework also provides a set of helper classes
for constructing new user interfaces for the 3rd party sub-
systems and for controlling the target architecture mod-
els.



Controllers The simulator can be controlled with the
controller frames shown in Figure 4. Subsystem function-
ality can be added to the controllers with a single line of
code. The default controls include controls for resetting
and stepwise advancing of the simulation. A persistent
snapshot feature of the simulation state is also planned.

Figure 4: Controller frames for the simulation.

Configuration The user interface can easily be con-
nected to any ad-hoc configuration data structure. The
feature encourages the use of parameterized architecture
model since only a single line of code is required to make
all related configurable parameters visually tunable via
the GUI and to connect them to a persistent storage for
later use. A preliminary version of the configuration data
for the moving threads architecture is shown in Figure 5.

Figure 5: Simulator configuration frame.

3 Future work

SMASim ’s main goal is to provide a CPU simulator for
the evaluation of the aforementioned moving threads ar-
chitecture. Since the purpose of the architecture’s sim-
ulator is to validate the operation of the model and to
produce meaningful test results from various multi-core
benchmark, the goal can be restated as having (i) a
more complete library of general purpose and moving
threads architecture components, (ii) more detailed mon-
itoring capabilities for extracting more relevant runtime
datal, and (iii) improved execution speed because a larger
benchmark suite may take drastically longer to execute
than on the most modern simulation engines.

4 Conclusions

So far SMASim has remained as one of the only simu-
lators that use the target language to express the target
architecture model. Although SMASim loses in speed to

the latest simulator inventions, it remains unique due to
the hybrid solution that allows combining both functioal
and object oriented features of the simulator’s implemen-
tation language to form a modular and verified target
architecture model.

References

[1] T. Austin, E. Larson, and D. Ernst. Simplescalar:
An infrastructure for computer system modeling.
Computer, pages 59–67, 2002.

[2] Sangyeun Cho, Socrates Demetriades, Shayne
Evans, Lei Jin, Hyunjin Lee, Kiyeon Lee, and
Michael Moeng. Tpts: A novel framework for very
fast manycore processor architecture simulation. In
ICPP ’08: Proceedings of the 2008 37th Interna-
tional Conference on Parallel Processing, pages 446–
453, Washington, DC, USA, 2008. IEEE Computer
Society.

[3] Steven Fortune and James Wyllie. Parallelism in
random access machines. In Proceedings of the tenth
annual ACM symposium on Theory of computing,
STOC ’78, pages 114–118, New York, NY, USA,
1978. ACM.

[4] Joseph JáJá. An introduction to parallel algorithms.
Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 1992.

[5] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim,
and S.Y. Han. FaCSim: a fast and cycle-accurate
architecture simulator for embedded systems. ACM
SIGPLAN Notices, 43(7):89–100, 2008.

[6] D. Mihocka and S. Shwartsman. Virtualization
Without Direct Execution or Jitting: Designing a
Portable Virtual Machine Infrastructure.

[7] Martin Odersky and al. An overview of the scala pro-
gramming language. Technical Report IC/2004/64,
EPFL Lausanne, Switzerland, 2004.

[8] PM Ortego and P. Sack. SESC: SuperESCalar Sim-
ulator, February 2007.

[9] J. Paakkulainen, J-M Mäkelä, V. Leppänen, and
M. Forsell. Outline of risc-based core for multi-
processor on chip architecture supporting moving
threads. In CompSysTech ’09: Proceedings of the
International Conference on Computer Systems and
Technologies and Workshop for PhD Students in
Computing, pages 1–6, New York, NY, USA, 2009.
ACM.

[10] MT Yourst. PTLsim: A cycle accurate full system
x86-64 microarchitectural simulator. Performance
Analysis of Systems and Software, 2007. ISPASS
2007. In IEEE International Symposium on, pages
23–34, 2007.


