
International Conference on Computer Systems and Technologies - CompSysTech’09

MVTsim - Software Simulator for
Multicore on Chip Parallel Computer Architectures

Jari-Matti Mäkelä, Jani Paakkulainen and Ville Leppänen

Abstract: Designing a parallel computer architecture for the multi-core on chip environment involves a
lot of architectural design issues. Actual hardware design based on ASIC and for demonstrational purposes
on FPGA is very expensive method to study the cost of various design choices. Therefore, we have de-
veloped a software based simulator MVTsim for multi-core on chip parallel computers. Due to a special
theme of our research project, the simulator is oriented towards supporting a very fine-grained moving
threads approach.

 We describe the general software architecture of the multi-core on chip simulator. In the simulator,
special emphasis has been put on concisely expressing the problem domain with a general purpose lan-
guage, the modular structure of the simulator and target architecture, support for flexible combining of differ-
ent granularity levels of components, and modelling relevant physical delay related properties. We demon-
strate our simulator by describing a RISC-based configuration supporting the moving threads approach, and
give some initial results concerning running actual programs with our simulator.

Key words: Moving Threads, Multiprocessor on Chip Architecture, Cycle-accurate simulation.

 1 INTRODUCTION
Speeding up computers by increasing their clock rate is a development trend that has

continued for decades. As the heating as well as general lithography based problems have
become rather serious issues during the recent years, the processor manufacturing in-
dustry seems to be heading for multi-core architectures instead of aiming at higher and
higher clock rates. Several kinds of multi-core processors have been presented by all the
major processor manufacturers. However, an emerging trend has been that programming
the contemporary multi-core processors is seen very problematic. The main reason is per-
haps that the hardware designers have created a hardware environment, which is difficult
to program efficiently. The programmers simply would need to consider too much of the
low level architectural details when writing programs (e.g. how to optimize the usage of
caches).

Completely new kinds of approaches for parallel computers have been proposed
already a long time ago in the form of Parallel Random Access Model (PRAM) [6, 7]. Im-
plementation of PRAMs was extensively studied in the 1990's [9], and there was even the
SB-PRAM project [1, 8] providing an experimental hardware implementation.

Recently, such PRAM implementations have been studied in the multi-core on-chip
context by Forsell [3, 4] (Eclipse architecture) and by Vishkin et al [14] (Paraleap architec-
ture). In our MOTH1 (Moving threads realization study) project we have considered an ap-
proach for multi-core on-chip architectures, where the programming model is based on the
PRAM. The PRAM approach abstracts away all kinds of mapping problems by providing a
shared memory abstraction with unit (amortized) access cost. It also provides flexible ex-
pression of threads as well as strong synchronous execution of different threads. These
properties together provide an easy-to-program approach for programming multi-core sys-
tems, but at the same time ask for efficient implementations of the PRAM approach.

We have invented a new kind of approach for mapping the computation of an applica-
tion to MP-SOC architectures [5] (some preliminary ideas appear in [9, 10]). Instead of
moving data read and write requests, we move extremely lightweight threads between the
processor cores. Each processor core is coupled with a memory module and parts of each
memory module together form a virtual shared memory abstraction. Applications are writ-
ten using a high-level language based on shared memory. As a consequence of moving

1 This research has been funded by the Academy of Finland project number 128729

International Conference on Computer Systems and Technologies - CompSysTech’09

threads instead of data we avoid all kinds of cache coherence problems. Another advant-
age is flexible and efficient creation of new threads. In our architecture, the challenge of
having efficient implementation of an application reduces to mapping the used data so that
the need to move threads is balanced with respect to the bandwidth of the communication
lines. Writing an application to use lots of threads is rather easy (due to rich literature of
parallel algorithms using the shared memory abstraction). This method also eliminates the
need for separate reply network and introduces a natural way to exploit locality without
sacrificing the synchronicity of the PRAM model.

Previous work on software based simulators covers various kinds of designs, with fo-
cus, among others, on performance, ease of development, and tool support. As we evalu-
ated a wide range of available tools such as the XMTsim project (simulating the Paraleap
architecture [14]), SESC [12], and QEMU [2], it occurred that a simulator combining the
ideas of architecture independence, cycle-accurate precision, ease of use, modularity, and
support for varying granularity levels, yet without sacrificing the general purposeness of a
programming language was needed. MVTsim is the result of these ideas, implemented in
a hybrid object-functional language Scala, extended with the domain specific constructs of
the simulator framework. As performance was a secondary design goal, possible perform-
ance issues will be considered as the design stabilizes.

 2 SOFTWARE ARCHITECTURE FOR SIMULATOR
 2.1 General structure
On a high abstraction level, and from the user’s point of view, it is convenient to see

the simulator as a message passing system, extended with the domain specific constructs
of the target architecture. Most active objects modelled with the framework derive from
Executor or Executable. As the simulated devices often share common functionality,
classes Component and Command extend these interfaces respectively, exposing a prac-
tical platform with command queues and event driven functional message passing.

Miscellaneous utility classes, such as the clock classes emitting clock ticks that trig-
ger commands, form the third category of classes. Each active component is connected to
some clock. Each clock has an independent frequency, but a shared controller clock is
used to coordinate the execution in a globally synchronized stepwise manner. Figure 1
visualizes the class relations when implementing a simple target architecture.

Figure 1: Class diagram of the general structure of the simulator, as a message passing system.

There is no single correct rule to map the target architecture into simulator code. We
have emphasized the compositionality and exchangeability of components. Thus, all high
level physical entities of our design have a corresponding Component object in the simu-
lator. The actions performed by components and propagation of data between compon-
ents are done with the message passing facilities, the derivatives of the Command class.
These two classes describe the static and dynamic behaviour of the target architecture.

International Conference on Computer Systems and Technologies - CompSysTech’09

The simulated components are free from many physical constraints, except for the
functional dependencies between messages. The concept of latency associated with the
execution of each command and commands' ability to synchronize the state received from
their dependencies form the temporal building blocks for the semantics of the target archi-
tecture. Mapping the natural flow of control to commands can lead to unnatural designs.
However, commands are powerful enough to express most (if not all) concepts on a logic
circuit simulation, including varying operational frequencies. The framework also uses
Scala's type checker to enforce the (type) compatibility of a message channel between a
sender and a receiver, with a simple interface declaration at both ends.

Normal object oriented design methods such as composition and associations can be
used to capture the modular structure of the architecture and other desired properties.
Various levels of granularity can be achieved by careful choice of reusable, generic mes-
sage interfaces and mixing components representing different abstraction levels.

 2.2 Simulation of physical components
When implementing various physical components, the chosen abstraction level has a

large impact on possible implementation issues. We explain shortly some of the imple-
mentation design choices based on our experiences.

First, the execution pipeline is rather straightforward to implement. It can be modelled
as a single component, independent pipeline stages, or something between the two op-
posites. The pipeline design has major impact on simulation performance. A monolithic ap-
proach lacks the logical coherency between the physical and the virtual model, but can
provide even a tenfold speedup [13]. We chose to use an auxiliary class hierarchy for de-
coded instructions. Passing a higher level construct between stages improves code reuse
and aids the independent development of executable instructions.

If fetching of data from a memory has non-uniform latency, or the processing of data
takes variable amount of time, the estimated latency delay may need to be updated dy-
namically. The same reasoning applies to e.g. routing networks. This might require some
extra code in command queues since the latencies are constants by default.

Both heterogeneous and homogeneous multiprocessors can be modelled. The first
uses distinct classes for processors, the latter can be simply made by constructing multiple
instances of the processor class comprising all dependencies and processor internals. Ad-
ditionally, some development effort can be saved by using the library components
provided by the simulator's core package. Listing 1 demonstrates building a simple pass-
through cache component and attaching it to a processor unit.

 2.3 Instruction set
What we describe here applies to the architectures, such as our moving threads

based example, that use the built-in utility classes for the MIPS32 instruction set. Other im-
plementations may define their own instruction set models since the platform does not
treat instructions as special built-in constructs. By default all instructions inherit the

trait MemComponent {
 def loadFrom(a: Address): Returns[Data]
}
class CPU(c: Clock, val memory: MemComponent) extends Component(c)
class Cache(clock: Clock, source: MemComponent) extends
 Component(clock) with MemComponent {
 def loadFrom(a: Address) = fun { source.loadFrom(a) } init()
}
object CPU1 extends CPU(new Clock, new Cache(c, new Memory(c))

Listing 1: An example of adding a dummy pass-through cache for a memory.

International Conference on Computer Systems and Technologies - CompSysTech’09

Instruction trait. The instructions inherit a more specialized class such as
TypeRCommand, according to their type. These utility classes provide functionality for en-
coding and decoding the instruction, and default functionality in various pipeline stages.

Listing 2 presents the steps required to implement a simple instruction supported by
our architecture. The parameter to SpecialCommand defines the function field of the
instruction; its opcode is deduced from the type. The apply function for ExecuteStage
defines the actions to take when executed in the 3rd pipeline stage. Supported instructions
are enumerated in a Decoder class. The last line is boilerplate code for factory code.

 3 MOVING THREADS BASED ARCHITECTURE
Next we will describe the implementation of moving threads based target architec-

ture. The implementation closely follows the design principles introduced in Section 2.1,
i.e. the abstraction level follows the physical architecture, and there is a clear mapping
between each physical component and logical Component object. The intra- and inter-
component semantics are encoded in command objects. The following sections focus on
the physical architecture, but are applicable to the simulator as well. A more detailed de-
scription of the moving threads based architecture is presented in [11].

 3.1 Architectural overview
Our system consists of processor cores that are connected to each other with some

sparse network [9]. In the moving threads approach, the messages between cores move a
thread consisting of a program counter, an id number, and a small set of registers.

A cache-based access to the memory system is provided via each processor core,
but each core sees only a unique fraction of the overall memory space, thus removing
cache coherence problems. When a thread makes a reference out of the scope of its
memory area, the referencing thread must be moved to the core that can access that part
of the main memory. Besides the data cache, each core connects to an instruction cache.

Each of the cores contains two buffers for independent threads of execution. By tak-
ing an instruction cyclically from each thread, the core can wait for memory accesses tak-
ing a long time (and even tolerate the delays caused by moving the threads).To hide the
memory and other delays, the average number of threads per core must be higher than
the expected delay of executing a single instruction from any thread.

 3.2 Short description of the execution pipeline
Our execution pipeline is based on well-known basic RISC architecture. The conven-

tional RISC architecture consists of fetch, decode, execute, memory access, and write-
back stages. The major differences to the basic architecture are the program counter
structure and fetching of instructions from the instruction memory. In addition, the function-
al model of the pipeline is reorganized and extended from the original setup. Each stage is
separated with extended pipeline registers. These registers contain extra fields that are re-

Class Decoder {
...

 ADDU
}
class ADDU extends SpecialCommand((4 << 3) + 1) {
 def apply(e: ExecuteStage) = e.regs(2) = e.regs(0) + e.regs(1)
}
object ADDU extends MIPS32Instruction(() => new ADDU)

Listing 2: A mechanism for adding support for a new instruction called ADDU.

International Conference on Computer Systems and Technologies - CompSysTech’09

served to store thread's local id number and the program counter value. Both fields are
carried through all pipeline stages.

Instead of one program counter the processor has a large number of parallel program
counters, each dedicated with additional information fields (prefetched instruction, thread
id and state fields) to a thread. In every cycle, one executable entry is selected and
fetched to further processing in the processor's pipeline.

In the first phase of the pipeline the selection control finds out next instruction based
on the thread id and state of these threads. When suitable entry is located, command, id
and program counter value of selected thread are forwarded to the decode stage.

The decode phase operates with each instruction as the conventional pipeline does.
Operation code (opcode) bits tell what kind of command is under decoding. In addition, the
thread id number is used to select correct set of registers from the register file.

An arithmetic logic unit (ALU) executes demanded operations in the next pipeline
phase. Terms of branch instructions are also tested. The result of ALU operations, the next
program counter value, and the thread id are passed to the next pipeline registers.

A memory access stage is heavily extended from the conventional model. The data
memory access operates with preloaded CAM (Contents Addressable Memory) data buf-
fer. Parallel to data access, the instruction fetch is carried out in this step. If an instruction
reference request causes an instruction cache miss, issuing thread's status is changed.

The pipeline is finalized by the writeback and predecode stage. The writeback part
saves the result of arithmetic and logic operations and data memory requests. Predecod-
ing detects, if just fetched instruction's address is inside the processor's address space. If
the address belongs to address space of another processor core, a thread moving process
begins. Finally the new program counter value and the instruction are stored to a table
entry pointed by the thread id. The thread's status is updated depending on the type of
predecoded instruction.

 3.3 Preliminary performance results
Although high execution speed is not one of the primary motivators for the project, a

good performance is always desirable. Especially in the multi-core context, the number of
simulated components grows linearly with the number of cores. Thus, increasing the num-
ber of active processor cores will eventually decrease the potential clock frequency.

In MVTsim, the execution speed is determined by the amount of active messages
passed between components during a clock cycle, independent of the size of the architec-
ture. In the moving threads based architecture, active threads act as global event activat-
ors. When the processor executes a thread, new messages are generated throughout the
execution pipeline. On a larger time frame the system can be seen stable: as new thread
execution depends on earlier finished execution, the number of active messages has a
local upper bound as long as the simulated program does not start new threads.

Presently, no good estimates of the number of messages per active thread execution
can be given since the target architecture is in constant flux. Moreover, several parts of the
simulator for moving thread based architecture are still unimplemented, and finally, the
number of messages will also depend on the instructions executed by the simulator.

However, since the simulation framework is already in usable state, we made some
preliminary test runs with it. On a 2.66 GHz Core 2 Duo, running Linux 2.6.29.2, Sun JVM
6u14, and Scala 2.7.5, the framework ran on average a modest result of 600.000 virtual
cycles per second, with one component and one message per cycle, once the JIT compila-
tion had stabilized. This is about 4 times slower than the SESC simulator [12], running fully
implemented R10K virtual CPU on a Pentium III. Further optimizations, e.g. utilizing sever-
al processor cores on supporting host systems, are yet to be considered.

International Conference on Computer Systems and Technologies - CompSysTech’09

 4 CONCLUSIONS
MVTsim can be used to implement the proposed RISC-based architecture for a pro-

cessor supporting the moving threads approach. The main advantages of MVTsim are its
general purposeness, extensibility, modularity and support for variable granularity levels,
provided by the component based message passing framework. In addition, the simulation
is cycle-accurate, which allows analysing the execution of the virtual instructions precisely.

So far the flexible design has supported the iterative development of the target archi-
tecture. Parts of the proposed features, e.g. those enabling the use of multiple cores, have
not yet been fully implemented, and thus a thorough analysis of the simulator is not yet
possible. Additionally, the current architecture performs somewhat slower than existing
simulators considered in this paper, but our focus will be on the performance issues once
the general design of the underlying architecture has stabilized.

 REFERENCES
[1] P. Bach, M. Braun, A. Formella, J. Friedrich, T. Grun, and C. Lichtenau, Building

the 4 processor SB-PRAM prototype, In Proceedings of the 30th Hawaii International Con-
ference on System Sciences: Advanced Technology Track - Vol. 5, 1997.

[2] F. Bellard, QEMU, a fast and portable dynamic translator Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, pp. 41-46, 2005.

[3] M. Forsell, A Scalable High-Performance Computing Solution for Network on
Chips. IEEE Micro22(5) (September-October 2002), pp. 46-55.

[4] M. Forsell and V. Leppänen, High-Bandwidth On-Chip Communication Architec-
ture for General Purpose Computing, Proceedings of the 9th World Multi-Conference on
Systems, Cybernetics and Informatics, WMSCI’2005, pp. 1–6, 2005.

[5] M. Forsell and V. Leppänen, Moving Threads: A Non-Conventional Approach for
Mapping Computation to MP-SOC, In Proc. 2007 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’07), pp. 232-238, 2007.

[6] S. Fortune and J. Wyllie, Parallelism in Random Access Machines, In Proceedings
of the 10th ACM Symposium on Theory of Computing, pp. 114-118, 1978.

[7] J. Jájá, An Introduction to Parallel Algorithms, Addison Wesley, 1992.
[8] J. Keller, C. Kessler, and J. Träff, Practical PRAM Programming, Wiley, 2001.
[9] V. Leppänen, Studies on the Realization of PRAM, PhD thesis, University of

Turku, Department of Computer Science, TUCS Dissertation 3, November, 1996.
[10] V. Leppänen, Balanced PRAM Simulations via Moving Threads and Hashing,

Journal of Universal Computer Science, 4:8, pp. 675–689, 1998.
[11] J. Paakkulainen et al., Outline of RISC-based Core for Multiprocessor on Chip

Architecture Supporting Moving Threads, Proceedings of the conference on Computer
Systems and Technologies, CompSysTech' 09, to be published.

[12] J. Renau et al., SESC simulator, http://sesc.sourceforge.net, January, 2005.
[13] P. Strazdins, CycleCounter: an Ef cient and Accurate UltraSPARC III CPU Simu-

lation Module, Technical reports, The Australian National University, Department of Com-
puter Science, 2005.

[14] X. Wen and U. Vishkin. FPGA-based prototype of a PRAM-On-Chip processor,
Computer Frontiers 2008, May 5-7, 2008.

ABOUT THE AUTHORS
Researcher Jani Paakkulainen, MSc, Department of Information Technology, University

of Turku, Finland, E-mail: jani.paakkulainen@utu.fi
Researcher Jari-Matti Mäkelä, BSc, Department of Information Technology, University of

Turku, Finland, E-mail: jmjmak@utu.fi
Assoc. Prof. Ville Leppänen, PhD, Department of Information Technology, University

of Turku, Finland, E-mail: ville.leppanen@it.utu.fi

