MPLc Documentation

Tomi Karlstedt & Jari-Matti Makela

July 11, 2008

Contents

1 Introduction 1
2 Implementation 3
3 Structure 5
3.1 Class MPLc 7
3.2 Class AspectJPrinter 7
4 Installation 9

5 Using MPLc 11

Chapter 1

Introduction

MPLc is a MPL-to-AspectJ compiler. MPLc uses Antlr v3 to lex and parse
MPL files and hand-written tree walking to transform the Antlr generated
Abstract Syntax Trees to a printable AspectJ form. Running the MPLc
program always prints an aspect if errors do not occur during the parsing
or tree walking. Printing can be done into a file or into standard output
(System.out).

MPLc version 1.1 is compatible with the MPL version 0.7.0 Antlr gram-
mar. MPLc does not require Antlr to be run as the Antlr generated lexer
and parser are provided in the JAR package. However, MPLc still depends
on the Antlr runtime package.

In chapter 2 we describe the compile process. The chapter 3 goes through
the implementation class by class. Chapters 4 and 5 give system require-
ments, installation instructions, and usage instructions.

CHAPTER 1. INTRODUCTION

Chapter 2

Implementation

MPLc is run by calling the main method of the MPLc class. The general
“control flow” of MPLc can be described in 3 steps. The first step reads
from policy files and turns the token streams into Abstract Syntax Trees.
The second step manipulates the generated trees checking for possible er-
rors and producing trees that are easily printed. This data is saved into a
SemanticResult container. The final step is the actual printing process.

1. “First pass”:

a. The main method creates a new instance of FirstPassHandler which
runs the compile(String) method for the given policy name. The
compile(String) method first executes the Antlr-generated lexer and
parser for the policy file which produce an AST.

b. The AST nodes are separated into names, imports, policy variables,
package imports, and rules.

c. For each of the listed imports the method calls compile(String)
method recursively and creates a new Module instance with references
to the original class members. The pass keeps track of cyclic policy
imports and issues an error if one is found.

d. The pass produces a tree structure of modules which contains lists of
all the defined rules, variables, and imports in all of the policies.

2. “Second pass”:

a. Trees containing class imports are transformed into list of Strings.

3

€.

CHAPTER 2. IMPLEMENTATION

. Policy variables are converted from trees to PolicyVariable objects.

This is done recursively to preserve the introduction order from im-
ported policies.

The variables are finally checked of type inconsistencies and the final
default value is determined.

. The rules are mapped into rule definitions, condition trees, and effect

trees. The mapping preserves the recursive introduction order.

Finally the effects are validated to the policy variable assignment form.

3. Pretty-print:

MPLc creates a printer object with the set of data to be printed and the
print stream. The aspect is printed through the printAspect() method.
The printing process uses some tree rewrite rules with imaginary tokens
to identify MPL construct related tokens. Apart from these rewrites the
printing is straight-forward token printing from the given set of data.

In MPLc version 1.1 the AspectJ printer is still responsible of certain
MPL-to-AspectJ transformation which may cause non-printing related error
messages in printing phase. See Section 3.2 for more information.

Chapter 3

Structure

MPLec 1.1 includes Java files as follows:

e package: mpl

MPLc.java:
The main compiler class which includes the main program to be
run. See Section 3.1 for more information.

MPLSet.java:

A definition for the MPL set variable used in aspects. Extends
generic HashSet<T> by implementing the different set expres-
sions.

MPLShutdown.java:

An interface for the shutdown sequence. As of MPL 1.0 contains
only the shutdown() method that must be implemented by the
concrete shutdown object.

MPLSimpleShutdown.java:

Gives a simple implementation for the shutdown sequence by ter-
minating the program and giving an error message in System.err.

e package: mpl.backend

AspectJPrinter.java:

The AspectJ pretty-printer class for the MPLc compiler. In
MPLc version 1.1 handles some further MPL-to-AspectJ trans-
formation which is described in Section 3.2.
AspectCPPPrinter.java:

The AspectC++ pretty-printer class for the MPLc compiler. Not
currently implemented.

CHAPTER 3. STRUCTURE

— AspectPrinter.java:
Generic interface for all pretty-printer classes.

e package: mpl.frontend

— FirstPassHandler.java:
Loads imports and classifies AST nodes.

— FirstPassHandlerCore.java:
Abstract helper routines for the first pass.

— Module.java:
Represents the data of one MPL policy file.

— MPLLezxer.java:
Antlr-generated lexer that takes an MPL policy file as input.

— MPLParser.java:
Antlr-generated parser that takes a token stream from the lexer
as input and generates an AST for the given MPL policy. The
form of the AST is defined in the MPL grammar for Antlr v3
(MPL.g).

— Rule.java:
Container for preprocessed lists of AST nodes of conditions, ef-
fects, and rules.

— SemanticPassHandler.java:
Processes all imports, java package imports, variables, rules, and
effects found in MPL files. Also validates effects and variable
definitions.

— SemanticPassHandlerCore.java:
Abstract helper routines for the second pass.

— SemanticResult.java:
Container for all relevant data gathered during the first two passes.
This container is used to print the aspect.

— TokenTypes.java:
Token enumeration for AST manipulation. Automatically gener-
ated.

e package: mpl.frontend.types
Type, TypeList, TypeSet, and TypeSimple represent all supported pol-
icy variable types.

3.1. CLASS MPLC 7

e package: mpl.frontend.variabl es
PolicyVariable, VarList, VarPattern, VarPrimitive, and VarSet repre-
sent supported policy variables.

3.1 Class MPLc

MPLc includes the main method that handles the given command-line op-
tions and starts the compiling process. In delegates the manual tree walking
needed to transform the given input files into printable trees first to First-
PassHandler, which imports all required policy files, lexes and parses the
input files, but also classifies the abstract syntax tree on high level.

A simple semantic pass follows the first pass. The second pass extracts
more data from the syntax tree into easily accessible lists and partly validates
the language (effects and variable conflicts).

Finally the main method chooses between available pretty-printers and
output streams based on the given command line options.

3.2 Class AspectJPrinter

AspectJPrinter prints an aspect from the set of trees (SemanticResult) given
as parameter in the constructor. The overall form of the aspect is generated
in the printAspect() method which calls other methods to print more fine-
grained constructs of the aspect including the aspect variables, pointcut
definitions, and the different advices. Antlr rewrite rules with imaginary
tokens are used to identify MPL-related constructs and modified accordingly
while Java expressions are printed token by token.

Due to limitations in MPLc design and implementation the compiler
object does not create a rule-specific variable type table. This leads to type
checking problems in the printer implementation. In particular the printer
checks element-to-set (e2s) conversion validity. Therefore it is possible that
the printer object halts the compiling process with a proper error message.
This will happen after the printer has written some amount of information
into the defined print stream.

CHAPTER 3. STRUCTURE

Chapter 4

Installation

MPLc is distributed in a JAR package containing the compiler and all of
the required classes for using MPLc generated aspects. In order to generate
aspects from policies you will need Java 1.5 or later and Antlr v3 or later.
In order to use the generated aspects you will need AspectJ 5 or later.
Also either mple-rt-1.1.jar or mple-1.1.jar is needed to compile the AspectJ
aspects.

Installation:

1 Save mplc-1.1.jar and antlr-runtime-3.0.x.jar into a directory.

2 Add the saved mplc-1.1.jar and antlr-runtime-3.0.x.jar to the
CLASSPATH environmental variable.

Requirements:

- Java 1.5, Antlr runtime

Optional requirements:

- AspectJ 5

10

CHAPTER 4. INSTALLATION

Chapter 5

Using MPLc

MPLec is used from the command line like:
java MPLc <options> <policymodule>

Where policy module is the name of the transformed policy. The policy
must be found in a file called <policymodule>.mpl. In MPLc 1.1 the ex-
tension doesn’t need to be omitted. If a policy includes further imported
policies they must be found in separate .mpl files either in the current di-
rectory or in same directory as <policymodule>.mpl.

MPLc creates a file called <policymodule>. java (unless other options
are used) to the current directory where <policymodule> is the name of the
given policy.

MPLc options include:

-print Prints the aspect into System.out instead of a file.

-shutdown <name> Uses an object of type <name> as the shutdown se-
quence. The class <name> must implement the interface MPLShut-
down

-aspect <name> Prints the aspect into a file called <name>.aj instead of
<policymodule>.aj.

-language <language> Generate the aspect code in given language, sup-
ported options: cpp (AspectC++) and java (AspectJ).

-debuginfo Generates extra runtime code to the aspects that prints debug
info whenever effects are being executed or conditions tested.

11

12 CHAPTER 5. USING MPLC

To compile the generated aspects, Java 1.5 compliance must be used
with the AspectJ compiler as well as themplc-1.1.jar ormplc-rt-1.1.jar
must be found in the CLASSPATH env variable.

