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What are random numbers good for
(according to D.E. Knuth)

m simulation

B sampling

m numerical analysis

B computer programming
m decision-making

m acsthetics

B recreation
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Random numbers?

m there is no such thing as a ‘random number’
is 42 a random number?
m definition: a sequence of statistically zndependent
random numbers with a uniform distribution
numbers are obtained by chance

they have nothing to do with the other numbers in
the sequence

m uniform distribution: each possible number 1s

equally probable
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Methods

B random selection

drawing balls out of a ‘well-stirred urn’

m tables of random digits

decimals from =

m generating data
white noise generators

cosmic background radiation

B computer programs?
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Generating random numbers with
arithmetic operations

m von Neumann (ca. 1946): middle square method
m take the square of previous number and extract the
middle digits
m cxample: four-digit numbers
m 7= 8269
=7, = 3763 (2 = 68376361)
=7, =1601 (r,, 2 = 14160169)
B 745 = 5632 (1,4 ,° = 2563201)
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Truly random numbers?

m cach number is completely determined by its
predecessot!

B sequence is not random but appears o be
m — pseudo-random numbers

m all random generators based arithmetic
operation have their own in-built characteristic
regularities

m hence, testing and analysis 1s required
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Middle square (revisited)

m another example:

= 7= 06100

w7 = 2100 (»# = 37210000)

1.\ = 4100 ;. 2 = 4410000)
w7, ,=38100 (.., = 16810000)
m 7,4 = 6100 =7 (r;, 5 = 65610000)

B how to counteract?
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Words of the wise

m ‘random numbers should not be generated with
a method chosen at random’

— D. E. Knuth

m ‘Any one who considers arithmetical methods of
producing random digits 1s, of course, in a state
of sin.’

— J. von Neumann
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Words of the more (or less) wise

m ‘We guarantee that each number is random
individually, but we don’t guarantee that more
than one of them is random.’

— anonymous computer centre’s programming
consultant (quoted in Numerical Recipes in C)
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Other concerns

m speed of the algorithm
m case of implementation
m parallelization techniques

m portable implementations
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Linear congruential method

m D. H. Lehmer (1949)

m choose four integers
® modulus: 7 (0 < )
® multiplier: 2 (0 = a < »)
® increment: ¢ (0 = ¢ < )
m starting value (or seed): X, (0= X, < »)

m obtain a sequence (X ) by setting
X 1= (@X, + o modwm (n=0)
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Linear congruential method (cont’d)

mleth=a—1
m generalization:
X .= (@ X + (a—1) ¢/b) mod m
(k= 0,n=0)
m random floating point numbers U_ € [0, 1):

U =X /wm
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Random integers from a given
interval

m Monte Carlo methods
B approximate solution

® accuracy can be improved at the cost
of running time

m [as Vegas methods
B exact solution

® termination is not guaranteed

m Sherwood methods
® exact solution, termination guaranteed

= reduce the difference between good and bad inputs
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Choice of modulus m

m scquence of random numbers is finite — period
(repeating cycle)

m period has at most 7 elements — modulus
should be large

B recommendation: 77 1s a prime

m reducing modulo: 72 1s a power of 2

m=2":xmodm=xN 2 -1)
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Choice of multiplier a

B period of maximum length
mg=c=1:X =X +1) mod»
® hardly random: ...,0,1,2, ..., 2—1,0,1,2, ...

b) b) b) bJ b) b)

m results from Theorem 2.1.1

m 1if 7 1s a product of distinct primes, only 2 = 1 produces full

period

m if 7 1s divisible by a high power of some prime, there is
latitude when choosing

m rules of thumb
m0.01lm<a<0.99%

= no simple, regular bit patterns in the binary representation
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Choice of increment c

B Nno common factor with 7
|
Bc=g

m if ¢ = 0, addition operation can be eliminated
m faster processing

® period length decreases
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Choice of starting value X

B determines from where in the sequence the
numbers are taken

B to guarantee randomness, initialization from a
varylng source
® built-in clock of the computer
® last value from the previous run

m using the same value allows to repeat the
sequence
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Tests for randomness 1(2)

m Hrequency test
m Serial test

m Gap test

m Poker test

m Coupon collector’s test
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Tests for randomness 2(2)

m Permutation test

m Run test

m Collision test

m Birthday spacings test
m Spectral test
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Spectral test

m good generators will pass it
m bad generators are likely to fail it
m idea:

let the length of the period be 7

take # consecutive numbers

construct a set of ~dimensional points:

{ <Xﬂ’Xﬁ+13 ""Xﬁ+z‘—l> | 0=n< 77?}
m when 7 increases the periodic accuracy decreases

a truly random sequence would retain the accuracy
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Random shuffling

B generate random permutation, where all permutations
have a uniform random distribution

m shuffling = inverse sorting (!)
m ordered set S = (s, ..., 5,) to be shuffled

B naive solution
enumerate all possible 7! permutations

generate a random integer [1, #!] and select the corresponding
permutation

practical only when 7 1s small
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Random sampling without
replacement

B guarantees that the distribution of permutations is
uniform

m every element has a probability 1/7 to become selected in the
first position

= subsequent position are filled with the remaining 7 — 1
elements

® because selections are independent, the probability of any
generated ordered set is

Un - 1/(n=1) 1/(n—2) -... “1/1=1/z

= there are exactly 7! possible permutations
— generated ordered sets have a uniform distribution
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Premo: Standard order




Premo: After a riffle shuffle and card
insertion




Premo: The inserted card




Random numbers in games

B terrain generation

B cvents

m character creation

m decision-making

m game wotld compression

m synchronized simulation
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Game world compression

used in Elite (1984)

finite and discrete galaxy
enumerate the positions
set the seed value

generate a random value for each position
it smaller than a given density, create a star
otherwise, space is void

each star 1s associated with a randomly generated

number, which used as a seed when creating the star
system details (name, composition, planets)

can be hierarchically extended
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Terrain generation 1(2)

m simple random
m limited random

m particle deposition

i . ».—hu-h-'ﬁ & e A % L 5
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Terrain generation 2(2)

m fault line
m circle hill

m midpoint displacement
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