Algorithms and Networking for Computer Games

Chapter 3: Tournaments

Tournament types

- rank adjustment (or challege) tournament
- each match is a challenge for a rank exchange
- types: ladder, hill climbing, pyramid, king of the hill
- elimination tournament (or cup)
- each match eliminates the loser from the tournament
- types: random selection, random pairing, single elimination
- scoring tournament
- each match rewards the winner
- types: round robin
- hybridizations

Other uses for tournaments

- game balancing
- duelling synthetic players
- adjusting point rewarding schemes
- heuristic search
- selecting suboptimal candidates for a genetic algorithm
- group behaviour
- modelling pecking order
- learning player characteristics
- managing history knowledge

Example: Hill climbing tournament

Example: Elimination tournament

Example: Scoring tournament

	Tuomas	Aapo	Simeonil	Timo	Lauri	Eero
Juhani	m_{0}	m_{6}	m_{11}	m_{15}	m_{18}	m_{20}
	Tuomas	m_{1}	m_{7}	m_{12}	m_{16}	m_{19}
		Aapo	m_{2}	m_{8}	m_{13}	m_{17}
			Simeoní	m_{3}	m_{0}	m_{14}
				Tímo	m_{4}	m_{10}
					Lauri	m_{5}

Terms

- players: $p_{0} \ldots p_{n-1}$
- match between p_{i} and p_{j} match (i, j)
- outcome: WIN, LOSE, TIE
- rank of $p_{i}: \operatorname{rank}(\lambda)$
- players with the rank r. rankeds (r)
- round: a set of (possibly) concurrent matches
- bracket: diagram of match pairings and rounds

Rank adjustment tournaments

- a set of already ranked players
- matches
- independent from one another
- outcome affects only the participating players
- suits on-going tournaments
- example: boxing
- matches can be limited by the rank difference

Ladder and pyramid tournaments

$$
p_{n}: \operatorname{vank}(n)=4
$$

$$
p_{i}: \operatorname{rank}(\lambda)=0
$$

$$
p ; \operatorname{rank}(y)=1
$$

$$
p_{k}: \operatorname{rank}(k)=2
$$

$$
p_{m}: \operatorname{rank}(m)=2
$$

$$
p_{n}: \operatorname{rank}(n)=2
$$

$$
\operatorname{rankeds}(2)=\{k, m, n\}
$$

Elimination tournaments

- loser of a match is eliminated from the tournament
- no ties! \rightarrow tiebreak competition
- winner of a match continues to the next round
- how to assign pairings for the first round?
- seeding
- examples
- football cups, snooker tournaments

Random selection and random pairing

Single elimination

Bye

Seeding

- some match pairing will not occur in a single elimination tournament
- pairings for the first round (i.e., seeding) affects the future pairings
- seeding can be based on existing ranking
- favour the top-ranked players
- reachability: give the best players an equal opportunity to proceed the final rounds

Seeding methods

- random
- does not favour any player
- does not fulfil reachability criterion
- standard and ordered standard
- favours the top-ranked players
- ordered standard: matches are listed in increasing order
- equitable
- in the first round, the rank difference between the players is the same for each match

Scoring tournaments

- round robin: everybody meets everybody else once
- scoring table determines the tournament winner - players are rewards with scoring points
- winner and tie
- matches are independent from one another

Reduction to a graph

- n players
- clique K_{n}
- players as vertices, matches as edges

T_{5}
- how to organize the rounds?
- a player has at most one match in a round
- a round has as many matches as possible

Reduction to a graph (cont'd)

- if n is odd, partition the edges of the clique to $(n-1) / 2$ disjoint sets
- in each turn, one player is resting
- player p_{i} rests in the round i
- if n is even, reduce the problem
- player p_{n-1} is taken out from the clique
- solve the pairings for $n-1$ players as above
- for each round, pair the resting player p_{i} with player p_{n-1}

Round robin with seven players

round	matches			resting
0	$1-6$	$2-5$	$3-4$	0
1	$2-0$	$3-6$	$4-5$	1
2	$3-1$	$4-0$	$5-6$	2
3	$4-2$	$5-1$	$6-0$	3
4	$5-3$	$6-2$	$0-1$	4
5	$6-4$	$0-3$	$1-2$	5
6	$0-5$	$1-4$	$2-3$	6

Normalized round robin

- who is the resting player in a given round? \rightarrow answered
- given two players, in which round they will face one another?
\rightarrow no simple rule?
- change the selection of the resting player
- resting player: $r \cdot\lfloor(n+1) / 2\rfloor \bmod n$
\square if n is odd, p_{i} and p_{j} will face in the round $i+j$ mod (number of rounds)

Real-world tournament examples

- boxing
- reigning champion and challengers
- sport wrestling
- double elimination: consolation bracket
- professional wrestling
- royal rumble
- World Cup
- ice hockey championship
- snooker

Practical considerations

- home matches
- venue bookings
- travelling times
- risk management
- other costs

