Algorithms and Networking for Computer Games

Chapter 3: Tournaments

© 2006 Jouni Smed and Harri Hakonen

http://www.wiley.com/go/smed

Tournament types

- rank adjustment (or challege) tournament
 - each match is a challenge for a rank exchange
 - types: ladder, hill climbing, pyramid, king of the hill
- elimination tournament (or cup)
 - each match eliminates the loser from the tournament
 - types: random selection, random pairing, single elimination
- scoring tournament
 - each match rewards the winner
 - types: round robin
- hybridizations

Other uses for tournaments

game balancing

- duelling synthetic players
- adjusting point rewarding schemes

heuristic search

- selecting suboptimal candidates for a genetic algorithm
- group behaviour
 - modelling pecking order
- learning player characteristics
 - managing history knowledge

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games

Example: Scoring tournament

	Tuomas	Ааро	Simeoni	Timo	Lauri	Eero
Juhani	m ₀	m _c	<i>m</i> ₁₁	m ₁₅	m ₁₈	m ₂₀
	Tuomas	m ₁	m ₇	m ₁₂	m ₁₆	<i>m</i> ₁₉
		Ааро	<i>m</i> 2	111 ₈	m ₁₃	<i>m</i> ₁₇
			Simeoni	m ₃	m ₉	m ₁₄
				Timo	m ₄	<i>m</i> ₁₀
					Lauri	<i>m</i> 5

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games Chapte

Terms

- players: $p_0 \dots p_{n-1}$
- match between p_i and p_j : match(i, j)
- outcome: win, lose, TIE
- rank of p_i : rank(i)
- players with the rank r: rankeds(r)
- round: a set of (possibly) concurrent matches
- bracket: diagram of match pairings and rounds

Rank adjustment tournaments

- a set of already ranked players
- matches
 - independent from one another
 - outcome affects only the participating players
- suits on-going tournaments
 - example: boxing
- matches can be limited by the rank difference

Ladder and pyramid tournaments $p_i: rank(i) = 0$ $p_i: rank(j) = 1$ $p_i: rank(j) = 1$

 p_k : rank(k) = 2 -

 p_m : rank(m) = 2 $p_n: rank(n) = 2$

 $rankeds(2) = \{k, m, n\}$

 p_k : rank(k) = 2

 $p_n: rank(n) = 4$

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games

Elimination tournaments

- loser of a match is eliminated from the tournament
 - \blacksquare no ties! \rightarrow tiebreak competition
- winner of a match continues to the next round
- how to assign pairings for the first round?
 - seeding
- examples
 - football cups, snooker tournaments

Algorithms and Networking for Computer Games

Random selection and random pairing

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games

Single elimination

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games Ch

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games Cha

- some match pairing will not occur in a single elimination tournament
- pairings for the first round (i.e., seeding) affects the future pairings
- seeding can be based on existing ranking
 - favour the top-ranked players
 - reachability: give the best players an equal opportunity to proceed the final rounds

Seeding methods

■ random

- does not favour any player
- does not fulfil reachability criterion
- standard and ordered standard
 - favours the top-ranked players
 - ordered standard: matches are listed in increasing order

equitable

 in the first round, the rank difference between the players is the same for each match

Scoring tournaments

- round robin: everybody meets everybody else once
- scoring table determines the tournament winner
 players are rewards with scoring points
 winner and tie
- matches are independent from one another

Reduction to a graph

- *n* players
- clique K_n
- players as vertices, matches as edges
- how to organize the rounds?
 - a player has at most one match in a round
 - a round has as many matches as possible

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games Chap

Reduction to a graph (cont'd)

- if *n* is odd, partition the edges of the clique to (n-1)/2 disjoint sets
 - in each turn, one player is resting
 - Implayer p_i rests in the round *i*
- if *n* is even, reduce the problem
 - player p_{n-1} is taken out from the clique
 - solve the pairings for n 1 players as above
 - for each round, pair the resting player p_i with player p_{n-1}

Round robin with seven players

round		resting		
0	1 – 6	2-5	3 – 4	0
1	2-0	3 – 6	4 – 5	1
2	3 – 1	4-0	5 – 6	2
3	4 – 2	5 – 1	6 – 0	3
4	5 – 3	6 – 2	0 – 1	4
5	6 – 4	0-3	1 – 2	5
6	0-5	1 – 4	2-3	6

© 2006 Jouni Smed and Harri Hakonen

Algorithms and Networking for Computer Games

Normalized round robin

- who is the resting player in a given round?
 → answered
- given two players, in which round they will face one another?
 - \rightarrow no simple rule?
- change the selection of the resting player
 resting player: r · [(n + 1) / 2] mod n
 if n is odd, p_i and p_j will face in the round i + j mod (number of rounds)

Real-world tournament examples

boxing

reigning champion and challengers

sport wrestling

double elimination: consolation bracket

professional wrestling

royal rumble

World Cup

ice hockey championship

■ snooker

Practical considerations

- home matches
- venue bookings
- travelling times
- risk management
- other costs