Algorithms and Networking
for Computer Games

Chapter 4: Game Trees

© 2006 Jouni Smed and Hatri Hakonen http:/ /www.wiley.com/go/smed

Game types

m perfect information games

® no hidden information

m two-player, perfect information games
= Noughts and Crosses
= Chess
= Go
m imperfect information games
= Poker

= Backgammon

= Monopoly
B zero-sum property

m one player’s gain equals another player’s loss

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 2

Game tree

m all possible plays of two-player, perfect
information games can be represented with a
game tree

nodes: positions (or states)

edges: moves
m players: MAX (has the first move) and MIN
m ply = the length of the path between two nodes

MAX has even plies counting from the root node

MIN has odd plies counting from the root node

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 3

Division Nim with seven matches

1111{{
“ N\

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 4

Game tree for Division Nim

I
i | i il

TN
THINDNEMT
TN

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 5

Problem statement

Given a node » in a game tree

find a winning strategy for MAX (or MIN) from »

or (equivalently)

show that MAX (or MIN) can force a win from »

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 6

Minimax

B assumption: players are rational and try to win

B oiven a game tree, we know the outcome in the leaves

assign the leaves to win, draw, or loss (or a numeric value like
+1, 0, —1) according to MAX’s point of view

m at nodes one ply above the leaves, we choose the best
outcome among the children (which are leaves)

MAX: win if possible; otherwise, draw if possible; else loss

MIN: loss if possible; otherwise, draw if possible; else win

m recurse through the nodes until in the root

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 7

Minimax rules

1. If the node 1s labelled to MAX, assign it to the
maximum value of its children.

2. If the node is labelled to MIN, assign it to the
minimum value of its children.

= MIN minimizes, MAX maximizes — minimax

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 8

Game tree with valued nodes

=~

LT 111 s |

+1

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes

B e

Chapter 4 — Slide 9

Analysis

B simplifying assumptions
internal nodes have the same branching factor 4
game tree is searched to a fixed depth 4
B time consumption is proportional to the number of
expanded nodes
1 — root node (the initial ply)
b — nodes in the first ply
/» — nodes in the second ply
¥ — nodes in the dth ply

m overall running time O(/7)

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 10

Rough estimates on running
times when d=5

m suppose expanding a node takes 1 ms

m branching factor / depends on the game
m Draughts (6= 3): 7= 0.243 s

m Chess (/= 30): =67 h

m Go (b= 300): =77 a

m alpha-beta pruning reduces /4

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 11

Controlling the search depth

m usually the whole game tree 1s too large
— limit the search depth
— a partial game tree
— partial minimax

m /-move look-ahead strategy
B stop searching after » moves
® make the internal nodes (i.e., frontier nodes) leaves

® use an evaluation function to ‘ouess’ the outcome

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 12

Evaluation function

B combination of numerical measurements
m(s, p) ot the game state

single measurement: 72(s, p)
difference measurement: 72(s, p) — wj(s, 7)
ratio of measurements: (s, p) / 7{s, q)

m agoreoate the measurements maintaining the
ZEro-sum property

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 13

Example: Noughts and Crosses

m heuristic evaluation function e:

= count the winning lines open to MAX

® subtract the number of winning lines open to MIN
m forced wins

m state is evaluated +00, if it 1s a forced win for MAX

m state 1s evaluated —0, if it is forced win for MIN

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 14

Examples of the evaluation

e(*) =6-—5=1

o() =4 _5=_1

O
O () = o0

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 15

Drawbacks of partial minimax

m horizon effect

m heuristically promising path can lead to an unfavourable
situation

m staged search: extend the search on promising nodes
= iterative deepening: increase # until out of memory or time
m phase-related search: opening, midgame, end game

= however, horizon effect cannot be totally eliminated

m bias

B we want to have an estimate of minimax but get a minimax of
estimates

m distortion in the root: odd plies — win, even plies — loss

© 2006 Jouni Smed and Hatri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 16

The deeper the better...?

B assumptions:
m 7-move look-ahead
m branching factor 4, depth 4,
m leaves with uniform random distribution
B minimax convergence theorem:
® 7 increases — root value converges to f(5, d)
B last player theorem:
= root values from odd and even plies not comparable
B minimax pathology theorem:

® 7 increases — probability of selecting non-optimal move
increases («— uniformity assumption!)

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 17

Alpha-beta pruning

m reduce the branching factor of nodes

m alpha value
B assoclated with MAX nodes
® represents the worst outcome MAX can achieve
B can never decrease
B beta value
m assoclated with MIN nodes

B represents the worst outcome MIN can achieve

B can never increase

© 2006 Jouni Smed and Hatri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 18

Example

B in 2 MAX node, o = 4

we know that MAX can make a move which will
result at least the value 4

we can omit children whose value is less than or
equal to 4

m in a MIN node, 3 =4

we know that MIN can make a2 move which will result
at most the value 4

we can omit children whose value is greater than or
equal to 4

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 19

Ancestors and o & 3

m alpha value of a node 1s never less than the alpha
value of its ancestors

m beta value of a node is never greater than the
beta value of its ancestors

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 20

Once again

o =3 ’BZS

I
/
/

<

=3

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganses Chapter 4 — Slide 21

Rules of pruning

1. Prune below any MIN node having a beta value
less than or equal to the alpha value of any of
its MAX ancestots.

2. Prune below any MAX node having an alpha
value greater than or equal to the beta value of
any of its MIN ancestors

Or, simply put: If o = B, then prune below!

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 22

Best-case analysis

m omit the principal variation

m at depth 4— 1 optimum pruning: each node
expands one child at depth 4

m at depth 4— 2 no pruning: each node expands all

children at depth 4— 1

m at depth 4— 3 optimum pruning

m at depth 4— 4 no pruning, etc.

m total amount of expanded nodes: Q(/7?)

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 23

Principal variation search

m alpha-beta range should be small
® limit the range artificially — aspiration search

m if search fails, revert to the original range
m game tree node 1s either
B o-node: every move has ¢ = o

= 3-node: every move has ¢ = 3

0 principal variation node: one or more moves has
e > o but none has ¢ = 3

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 24

Principal variation search (cont’d)

m if we find a principal variation move (L.e., between o
and), assume we have found a principal variation
node

= search the rest of nodes the assuming they will not produce a
good move
m assume that the rest of nodes have values < «

m null window: [o, a0 + €]
= if the assumption fails, re-search the node

m works well if the principal variation node is likely to get
selected first

m sort the children?

© 2006 Jouni Smed and Hatri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 25

Non-zeto sum game:
Prisoner’s dilemma

B two criminals are arrested and isolated from each other

B police suspects they have committed a crime together
but don’t have enough proof

m both are offered a deal: rat on the other one and get a
lighter sentence

m if one defects, he gets free whilst the other gets a long
sentence

= if both defect, both get a medium sentence

m if neither one defects (i.e., they co-operate with each other),
both get a short sentence

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 26

Prisoner’s dilemma (cont’d)

m two players

m possible moves
N CO—OPCI’ZVEC

m defect

m the dilemma: player cannot make a good
decision without knowing what the other will do

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 27

Payoftfs for prisoner A

Prisoner B’s move Co-operate: Defect: rat on

keep silent the other
prisoner

Co-operate: Fairly good: Bad:
keep silent 6 months 10 years

Prisoner A’s move

Defect: rat on Good: Mediocre:

the other 10 penalty 5 years
prisoner

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 28

Payoftts in Chicken

Driver B’s move Co-operate:

Swerve

Driver A’s move

Co-operate: Fairly good:

Swerve 125 a draw.

Defect: keep
going

Mediocre:

L chicken...

Defect: keep Good:

going 1 win!

Bad:

Crash, boom, bang!!

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 29

Payofttfs in Battle of Sexes

Wife’s move Co-operate: Defect: opera
boxing

Husband’s move

Co-operate: Wife: Very bad Wite: Good

e Husband: Very Husband:
bad Mediocre

D ISTIG T s el \Wife: Mediocre | Wife: Bad
Husband: Good |Husband: Bad

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 30

Iterated prisoner’s dilemma

B cncounters are repeated
B players have memory of the previous encounters

m R. Axelrod: The Evolution of Cooperation (1984)

m oreedy strategies tend to work pootly

m altruistic strategies work better—even if judged by self-
interest only

m Nash equilibrium: always defect!
® but sometimes rational decisions are not sensible

m Tit for Tat (A. Rapoport)
m co-operate on the first iteration
® do what the opponent did on the previous move

© 2006 Jouni Smed and Harri Hakonen Algorithms and Networking for Computer Ganmes Chapter 4 — Slide 31

	Algorithms and Networking for Computer Games
	Game types
	Game tree
	Division Nim with seven matches
	Game tree for Division Nim
	Problem statement
	Minimax
	Minimax rules
	Game tree with valued nodes
	Analysis
	Rough estimates on running times when d = 5
	Controlling the search depth
	Evaluation function
	Example: Noughts and Crosses
	Examples of the evaluation
	Drawbacks of partial minimax
	The deeper the better...?
	Alpha-beta pruning
	Example
	Ancestors and α & β
	Once again
	Rules of pruning
	Best-case analysis
	Principal variation search
	Principal variation search (cont’d)
	Non-zero sum game: Prisoner’s dilemma
	Prisoner’s dilemma (cont’d)
	Payoffs for prisoner A
	Payoffs in Chicken
	Payoffs in Battle of Sexes
	Iterated prisoner’s dilemma

