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Game typesGame types

perfect information gamesperfect information games
no hidden informationno hidden information

twotwo--player, perfect information gamesplayer, perfect information games
Noughts and CrossesNoughts and Crosses
ChessChess
GoGo

imperfect information gamesimperfect information games
PokerPoker
BackgammonBackgammon
MonopolyMonopoly

zerozero--sum propertysum property
one player’s gain equals another player’s lossone player’s gain equals another player’s loss
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Game treeGame tree

all possible plays of twoall possible plays of two--player, perfect player, perfect 
information games can be represented with a information games can be represented with a 
game treegame tree

nodes: positions (or states)nodes: positions (or states)
edges: movesedges: moves

players: players: MAXMAX (has the first move) and (has the first move) and MINMIN

ply = the length of the path between two nodesply = the length of the path between two nodes
MAXMAX has even plies counting from the root nodehas even plies counting from the root node
MINMIN has odd plies counting from the root nodehas odd plies counting from the root node
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Division Nim with seven matchesDivision Nim with seven matches
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Game tree for Division NimGame tree for Division Nim
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Problem statementProblem statement

Given a node Given a node vv in a game treein a game tree

find a winning strategy for find a winning strategy for MAXMAX (or (or MINMIN) from ) from vv

or (equivalently)or (equivalently)

show that show that MAXMAX (or (or MINMIN) can force a win from ) can force a win from vv
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MinimaxMinimax

assumption: players are rational and try to winassumption: players are rational and try to win
given a game tree, we know the outcome in the leavesgiven a game tree, we know the outcome in the leaves

assign the leaves to win, draw, or loss (or a numeric value likeassign the leaves to win, draw, or loss (or a numeric value like
+1, 0, +1, 0, ––1) according to 1) according to MAXMAX’s point of view’s point of view

at nodes one ply above the leaves, we choose the best at nodes one ply above the leaves, we choose the best 
outcome among the children (which are leaves)outcome among the children (which are leaves)

MAXMAX: win if possible; otherwise, draw if possible; else loss: win if possible; otherwise, draw if possible; else loss
MINMIN: loss if possible; otherwise, draw if possible; else win: loss if possible; otherwise, draw if possible; else win

recurse through the nodes until in the rootrecurse through the nodes until in the root
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Minimax rulesMinimax rules

1.1. If the node is labelled to If the node is labelled to MAXMAX, assign it to the , assign it to the 
maximum value of its children.maximum value of its children.

2.2. If the node is labelled to If the node is labelled to MINMIN, assign it to the , assign it to the 
minimum value of its children.minimum value of its children.

MINMIN minimizes, minimizes, MAXMAX maximizes → minimaxmaximizes → minimax
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Game tree with valued nodesGame tree with valued nodes
MAXMAX

MAXMAX
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MINMIN
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AnalysisAnalysis

simplifying assumptionssimplifying assumptions
internal nodes have the same branching factor internal nodes have the same branching factor bb
game tree is searched to a fixed depth game tree is searched to a fixed depth dd

time consumption is proportional to the number of time consumption is proportional to the number of 
expanded nodesexpanded nodes

1 1 —— root node (the initial ply)root node (the initial ply)
bb —— nodes in the first plynodes in the first ply
bb22 —— nodes in the second plynodes in the second ply
bbdd —— nodes in the nodes in the ddth plyth ply

overall running time overall running time OO((bbdd))
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Rough estimates on running Rough estimates on running 
times when times when dd = 5= 5

suppose expanding a node takes 1 mssuppose expanding a node takes 1 ms
branching factor branching factor bb depends on the gamedepends on the game
Draughts (Draughts (bb ≈ 3): ≈ 3): tt = 0.243 s= 0.243 s
Chess (Chess (bb ≈ 30): ≈ 30): tt = 6= 6¾¾ hh
Go (Go (bb ≈ 300): ≈ 300): tt = 77 a= 77 a
alphaalpha--beta pruning reduces beta pruning reduces bb
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Controlling the search depth Controlling the search depth 

usually the whole game tree is too large usually the whole game tree is too large 
→ limit the search depth → limit the search depth 
→ a partial game tree→ a partial game tree
→ partial minimax→ partial minimax
nn--move lookmove look--ahead strategyahead strategy

stop searching after stop searching after nn movesmoves
make the internal nodes (i.e., frontier nodes) leavesmake the internal nodes (i.e., frontier nodes) leaves
use an evaluation function to ‘guess’ the outcomeuse an evaluation function to ‘guess’ the outcome
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Evaluation functionEvaluation function

combination of numerical measurements combination of numerical measurements 
mmii((ss, , pp) of the game state) of the game state

single measurement: single measurement: mmii((ss, , pp))
difference measurement: difference measurement: mmii((ss, , pp) − ) − mmjj((ss, , qq))
ratio of measurements: ratio of measurements: mmii((ss, , pp) / ) / mmjj((ss, , qq))

aggregate the measurements maintaining the aggregate the measurements maintaining the 
zerozero--sum propertysum property



Chapter 4 Chapter 4 –– Slide 14Slide 14Algorithms and Networking for Computer GamesAlgorithms and Networking for Computer Games© 2006 Jouni Smed and Harri Hakonen© 2006 Jouni Smed and Harri Hakonen

Example: Noughts and CrossesExample: Noughts and Crosses

heuristic evaluation function heuristic evaluation function ee::
count the winning lines open to count the winning lines open to MAXMAX

subtract the number of winning lines open to subtract the number of winning lines open to MINMIN

forced winsforced wins
state is evaluated +∞, if it is a forced win for state is evaluated +∞, if it is a forced win for MAXMAX

state is evaluated state is evaluated ––∞, if it is forced win for ∞, if it is forced win for MINMIN
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Examples of the evaluationExamples of the evaluation

ee(•) = (•) = 66 –– 55 = 1= 1

ee(•) = (•) = 44 –– 55 = = ––11

ee(•) = +∞(•) = +∞
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Drawbacks of partial minimaxDrawbacks of partial minimax

horizon effecthorizon effect
heuristically promising path can lead to an unfavourable heuristically promising path can lead to an unfavourable 
situationsituation
staged search: extend the search on promising nodesstaged search: extend the search on promising nodes
iterative deepening: increase iterative deepening: increase nn until out of memory or timeuntil out of memory or time
phasephase--related search: opening, midgame, end gamerelated search: opening, midgame, end game
however, horizon effect cannot be totally eliminatedhowever, horizon effect cannot be totally eliminated

biasbias
we want to have an estimate of minimax but get a minimax of we want to have an estimate of minimax but get a minimax of 
estimatesestimates
distortion in the root: odd plies → win, even plies → lossdistortion in the root: odd plies → win, even plies → loss
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The deeper the better...?The deeper the better...?

assumptions:assumptions:
nn--move lookmove look--aheadahead
branching factor branching factor bb, depth , depth dd, , 
leaves with uniform random distributionleaves with uniform random distribution

minimax convergence theorem: minimax convergence theorem: 
nn increases → root value converges to increases → root value converges to ff((bb, , dd))

last player theorem:last player theorem:
root values from odd and even plies not comparableroot values from odd and even plies not comparable

minimax pathology theorem:minimax pathology theorem:
nn increases → probability of selecting nonincreases → probability of selecting non--optimal move optimal move 
increases (← uniformity assumption!)increases (← uniformity assumption!)
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AlphaAlpha--beta pruningbeta pruning

reduce the branching factor of nodesreduce the branching factor of nodes
alpha valuealpha value

associated with associated with MAXMAX nodesnodes
represents the worst outcome represents the worst outcome MAXMAX can achievecan achieve
can never decreasecan never decrease

beta valuebeta value
associated with associated with MINMIN nodesnodes
represents the worst outcome represents the worst outcome MINMIN can achievecan achieve
can never increasecan never increase
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ExampleExample

in a in a MAXMAX node, node, αα = 4= 4
we know that we know that MAXMAX can make a move which will can make a move which will 
result at least the value 4result at least the value 4
we can omit children whose value is less than or we can omit children whose value is less than or 
equal to 4equal to 4

in a in a MINMIN node, node, ββ = 4= 4
we know that we know that MINMIN can make a move which will result can make a move which will result 
at most the value 4at most the value 4
we can omit children whose value is greater than or we can omit children whose value is greater than or 
equal to 4equal to 4
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Ancestors and Ancestors and αα & & ββ

alpha value of a node is never less than the alpha alpha value of a node is never less than the alpha 
value of its ancestorsvalue of its ancestors
beta value of a node is never greater than the beta value of a node is never greater than the 
beta value of its ancestorsbeta value of its ancestors
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Once againOnce again

αα = 4= 4 ββ = 4= 4

αα = 3= 3

≤≤>>

αα = 5= 5

≥≥
αα = 3= 3

ββ = 5= 5

<< ≥≥

ββ = 3= 3

≤≤
ββ = 5= 5
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Rules of pruningRules of pruning

1.1. Prune below any Prune below any MINMIN node having a beta value node having a beta value 
less than or equal to the alpha value of any of less than or equal to the alpha value of any of 
its its MAXMAX ancestors.ancestors.

2.2. Prune below any Prune below any MAXMAX node having an alpha node having an alpha 
value greater than or equal to the beta value of value greater than or equal to the beta value of 
any of its any of its MINMIN ancestorsancestors

Or, simply put: If Or, simply put: If αα ≥ ≥ ββ, then prune below!, then prune below!
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BestBest--case analysiscase analysis

omit the principal variationomit the principal variation
at depth at depth dd –– 1 optimum pruning: each node 1 optimum pruning: each node 
expands one child at depth expands one child at depth dd
at depth at depth dd –– 2 no pruning: each node expands all 2 no pruning: each node expands all 
children at depth children at depth dd –– 1 1 
at depth at depth dd –– 3 optimum pruning3 optimum pruning
at depth at depth dd –– 4 no pruning, etc.4 no pruning, etc.
total amount of expanded nodes: total amount of expanded nodes: ΩΩ((bbdd/2/2))
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Principal variation searchPrincipal variation search

alphaalpha--beta range should be smallbeta range should be small
limit the range artificially → aspiration searchlimit the range artificially → aspiration search
if search fails, revert to the original rangeif search fails, revert to the original range

game tree node is eithergame tree node is either
αα--node: every move has node: every move has ee ≤ ≤ αα
ββ--node: every move has node: every move has ee ≥ ≥ ββ
principal variation node: one or more moves has principal variation node: one or more moves has 
ee > > αα but none has but none has ee ≥ ≥ ββ
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Principal variation search (cont’d)Principal variation search (cont’d)

if we find a principal variation move (i.e., between if we find a principal variation move (i.e., between αα
and and ββ), assume we have found a principal variation ), assume we have found a principal variation 
nodenode

search the rest of nodes the assuming they will not produce a search the rest of nodes the assuming they will not produce a 
good movegood move

assume that the rest of nodes have values < assume that the rest of nodes have values < αα
null window: [null window: [αα, , αα + + εε]]

if the assumption fails, reif the assumption fails, re--search the nodesearch the node
works well if the principal variation node is likely to get works well if the principal variation node is likely to get 
selected firstselected first

sort the children?sort the children?
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NonNon--zero sum game: zero sum game: 
Prisoner’s dilemmaPrisoner’s dilemma

two criminals are arrested and isolated from each othertwo criminals are arrested and isolated from each other
police suspects they have committed a crime together police suspects they have committed a crime together 
but don’t have enough proofbut don’t have enough proof
both are offered a deal: rat on the other one and get a both are offered a deal: rat on the other one and get a 
lighter sentencelighter sentence

if one defects, he gets free whilst the other gets a long if one defects, he gets free whilst the other gets a long 
sentencesentence
if both defect, both get a medium sentenceif both defect, both get a medium sentence
if neither one defects (i.e., they coif neither one defects (i.e., they co--operate with each other), operate with each other), 
both get a short sentenceboth get a short sentence
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Prisoner’s dilemma (cont’d)Prisoner’s dilemma (cont’d)

two playerstwo players
possible movespossible moves

coco--operateoperate
defectdefect

the dilemma: player cannot make a good the dilemma: player cannot make a good 
decision without knowing what the other will dodecision without knowing what the other will do
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Payoffs for prisoner APayoffs for prisoner A

Prisoner B’s move

Prisoner A’s move

Co-operate: 
keep silent

Defect: rat on 
the other 
prisoner

Co-operate: 
keep silent

Fairly good:Fairly good:
6 months6 months

Bad:Bad:
10 years10 years

Defect: rat on 
the other 
prisoner

Good:Good:
no penaltyno penalty

Mediocre:Mediocre:
5 years5 years
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Payoffs in ChickenPayoffs in Chicken

Driver B’s move

Driver A’s move

Co-operate: 
swerve

Defect: keep 
going

Co-operate: 
swerve

Fairly good:Fairly good:
It’s a draw.It’s a draw.

Mediocre:Mediocre:
I’m chicken...I’m chicken...

Defect: keep 
going

Good:Good:
I win!I win!

Bad:Bad:
Crash, boom, bang!!Crash, boom, bang!!
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Payoffs in Battle of SexesPayoffs in Battle of Sexes

Wife’s move

Husband’s move

Co-operate: 
boxing

Defect: opera

Co-operate: 
opera

Wife: Very badWife: Very bad
Husband: Very Husband: Very 
badbad

Wife: GoodWife: Good
Husband: Husband: 
MediocreMediocre

Defect: boxing Wife: MediocreWife: Mediocre
Husband: GoodHusband: Good

Wife: BadWife: Bad
Husband: BadHusband: Bad
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Iterated prisoner’s dilemmaIterated prisoner’s dilemma

encounters are repeatedencounters are repeated
players have memory of the previous encountersplayers have memory of the previous encounters
R. Axelrod: R. Axelrod: The Evolution of CooperationThe Evolution of Cooperation (1984)(1984)

greedy strategies tend to work poorlygreedy strategies tend to work poorly
altruistic strategies work betteraltruistic strategies work better——even if judged by selfeven if judged by self--
interest onlyinterest only

Nash equilibrium: always defect!Nash equilibrium: always defect!
but sometimes rational decisions are not sensible but sometimes rational decisions are not sensible 

Tit for Tat (A. Rapoport)Tit for Tat (A. Rapoport)
coco--operate on the first iterationoperate on the first iteration
do what the opponent did on the previous movedo what the opponent did on the previous move
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