Sought-after features

- open game world
- intelligent synthetic players
- multiplaying
- customization

■ extensions

- replaying

Simulations vs. computer games

Interaction in a multiplayer game

Turn-based game

Real-time game

Game progression as a graph

Linear

Conjoining

Forking

Unfolding

Key questions for synthetic players

- how to achieve real-time response?
- how to distribute the synthetic players in a network?
- how autonomous the synthetic players should be?
- how to communicate with other synthetic players?

Sought-after features (revisited)

- open game world
- intelligent synthetic players
- multiplaying
- customization
- extensions
- replaying

$$
\rightarrow \text { parameterization! }
$$

Algorithmic problems in computer games

- graphics and audio
- 3D rendering
- camera movements
- adaptive audio
- simulation and modeling
- game engines
- multiplayer networking
- protocols and security
- resource distribution
- artificial intelligence (AI)
- computer-controlled actors

Topics 1(2)

- Random Numbers
- if computers are deterministic, how to achieve indeterminism at all?
- Game Trees
- given time and resources, how to solve perfect information games?
- Path Finding
- observing the geography of the game world, how to get from one place to another?

§2 Random Numbers

- what is randomness?
- linear congruential method
- parameter choices
- testing
- random shuffling
- uses in computer games

Methods

- random selection
- drawing balls out of a 'well sirred urn'
- tables of random digits
- decimals from π
- generating data
- white noise generators
- cosmic background radiation
- computer programs?

Generating random numbers with arithmetic operations

- von Neumann (ca. 1946): middle square method
- take the square of previous number and extract the middle digits
■ example: four-digit numbers
- $r_{i}=8269$
- $r_{i+1}=3763\left(r_{i}^{2}=68376361\right)$
- $r_{i+2}=1601\left(r_{i+1}^{2}=14 \underline{160169}\right)$
- $r_{i+3}=5632\left(r_{i+2}{ }^{2}=2 \underline{563201}\right)$

Truly random numbers?

- each number is completely determined by its predecessor!
- sequence is not random but appears to be
- \rightarrow pseudo-random numbers
- all random generators based arithmetic operation have their own in-built characteristic regularities
- hence, testing and analysis is required

Middle square (revisited)

- another example:
- $r_{i}=6100$
- $r_{i+1}=2100\left(r_{i}^{2}=37 \underline{210000}\right)$
- $r_{i+2}=4100\left(r_{i+1}^{2}=4 \underline{410000}\right)$
- $r_{i+3}=8100\left(r_{i+2}{ }^{2}=16 \underline{810000}\right)$
- $r_{i+4}=6100=r_{i}\left(r_{i+3}{ }^{2}=65 \underline{10000}\right)$
- how to counteract?

Words of the wise

- 'random numbers should not be generated with a method chosen at random'
- D. E. Knuth
- 'Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.'
- J. von Neumann

Words of the more (or less) wise

- We guarantee that each number is random individually, but we don't guarantee that more than one of them is random.'
- anonymous computer centre's programming consultant (quoted in Numerical Recipes in C)

