Voluntary exercise project

- group work: 2-3 persons
- web page (currently in Finnish only):
http://staff.cs.utu.fi/kurssit/peliohjelmointi/
- topic: select from the given list or suggest your own
- supervisors
- Olli Luoma
- Kai Nikulainen
- Johannes Tuikkala

■ questions and enquiries to po@it.utu.fi

Idea and implementation

- implement a simple computer game which either
- provides a computer-controlled opponent
or
- allows multiplaying in a network
- platforms
- PCs (preferably using Java)
- mobile phones (using J2ME)

Important dates

- introductory lecture: October 1, 4 p.m.
- deadline for enrolments: October 3
- deadline for topic selection and preliminary plan submission: October 17
- deadline for final plan submission: October 31
- deadline for finished project: January 31, 2004

Reminder: Bonus on grades

- find error or suggest improvements on the lecture notes
- first one to send gets point(s); check the existing errata!
- among those who receive at least 10 points:
- student with most points gets 0.5 bonus on the grade
- the next best three get 0.25 bonus on the grade
- scoring (excerpt)
- 1 - error in text
- 2 - error in equation or code
- 4 - bug in code or improvement on a method
- e-mail to jouni.smed@cs.utu.fi, subject prefix 'a4cg'

Final remarks

- exercise project is voluntary!
- excercise project does not require participation on this course
- passing this course does not require participation on the exercise project
- but it is beneficial

■ questions \& enrolments to po@it.utu.fi or to the supervisors (not to me!)

Linear congruential method

- D. H. Lehmer (1949)
- choose four integers
- modulus: $m(0<m)$
- multiplier: $a(0 \leq a<m)$
- increment: $c(0 \leq c<m)$
- starting value (or seed): $X_{0}\left(0 \leq X_{0}<m\right)$
- obtain a sequence $\left\langle X_{n}\right\rangle$ by setting $X_{n+1}=\left(a X_{n}+c\right) \bmod m(n \geq 0)$

Linear congruential method (cont'd)

- let $b=a-1$
- generalization:
$X_{n+k}=\left(a^{k} X_{n}+\left(a^{k}-1\right) c / b\right) \bmod m$

$$
(k \geq 0, n \geq 0)
$$

- random floating point numbers $U_{n} \in[0,1)$: $U_{n}=X_{n} / m$

Random integers from a given interval

- Monte Carlo methods
- approximate solution
- accuracy can be improved at the cost of running time
- Las Vegas methods
- exact solution
- termination is not guaranteed
- Sherwood methods
- exact solution, termination guaranteed
- reduce the difference between good and bad inputs

Choice of modulus m

- sequence of random numbers is finite \rightarrow period (repeating cycle)
- period has at most m elements \rightarrow modulus should be large
- recommendation: m is a prime
- reducing modulo: m is a power of 2
- $m=2^{i}: x \bmod m=x \boldsymbol{\Pi}\left(2^{i}-1\right)$

Choice of multiplier a

- period of maximum length
- $a=c=1: X_{n+1}=\left(X_{n}+1\right) \bmod m$
- hardly random: $\ldots, 0,1,2, \ldots, m-1,0,1,2, \ldots$
- results from Theorem 2.1
- if m is a product of distinct primes, only $a=1$ produces full period
- if m is divisible by a high power of some prime, there is latitude when choosing a
- rules of thumb
- $0.01 m<a<0.99 m$
- no simple, regular bit patterns in the binary representation

Choice of increment c

- no common factor with m
- $c=1$
- $c=a$
- if $c=0$, addition operation can be eliminated
- faster processing
- period length decreases

Choice of starting value X_{0}

- determines from where in the sequence the numbers are taken
- to guarantee randomness, initialization from a varying source
- built-in clock of the computer
- last value from the previous run
- using the same value allows to repeat the sequence

Tests for randomness 1(2)

- Frequency test
- Serial test
- Gap test
- Poker test
- Coupon collector's test

