
1

Voluntary exercise project

group work: 2–3 persons
web page (currently in Finnish only):
http://staff.cs.utu.fi/kurssit/peliohjelmointi/

topic: select from the given list or suggest your own
supervisors

Olli Luoma
Kai Nikulainen
Johannes Tuikkala

questions and enquiries to po@it.utu.fi

Idea and implementation

implement a simple computer game which either
provides a computer-controlled opponent

or
allows multiplaying in a network

platforms
PCs (preferably using Java)
mobile phones (using J2ME)

Important dates

introductory lecture: October 1, 4 p.m.
deadline for enrolments: October 3

deadline for topic selection and preliminary plan 
submission: October 17

deadline for final plan submission: October 31

deadline for finished project: January 31, 2004

Final remarks

exercise project is voluntary! 
excercise project does not require participation on 
this course
passing this course does not require participation on 
the exercise project

but it is beneficial
questions & enrolments to po@it.utu.fi or to 
the supervisors (not to me!)

Reminder: Bonus on grades

find error or suggest improvements on the lecture notes
first one to send gets point(s); check the existing errata!
among those who receive at least 10 points:

student with most points gets 0.5 bonus on the grade
the next best three get 0.25 bonus on the grade

scoring (excerpt)
1 – error in text 
2 – error in equation or code
4 – bug in code or improvement on a method

e-mail to jouni.smed@cs.utu.fi, subject prefix ‘a4cg’ 

Other concerns

speed of the algorithm
ease of implementation
parallelization techniques
portable implementations



2

Linear congruential method

D. H. Lehmer (1949)
choose four integers

modulus: m (0 < m) 
multiplier: a (0 ≤ a < m)
increment: c (0 ≤ c < m) 
starting value (or seed): X0 (0 ≤ X0 < m)

obtain a sequence 〈Xn〉 by setting
Xn + 1 = (aXn + c) mod m (n ≥ 0)

Linear congruential method (cont’d)

let b = a – 1
generalization: 
Xn + k = (akXn + (ak – 1) c/b) mod m

(k ≥ 0, n ≥ 0)
random floating point numbers Un ∈ [0, 1):
Un = Xn / m

Random integers from a given 
interval

Monte Carlo methods
approximate solution
accuracy can be improved at the cost 
of running time

Las Vegas methods
exact solution
termination is not guaranteed

Sherwood methods
exact solution, termination guaranteed
reduce the difference between good 
and bad inputs

Choice of modulus m

sequence of random numbers is finite → period 
(repeating cycle)
period has at most m elements → modulus 
should be large
recommendation: m is a prime
reducing modulo: m is a power of 2

m = 2i : x mod m = x п (2i – 1)

Choice of multiplier a

period of maximum length
a = c = 1: Xn + 1 = (Xn + 1) mod m
hardly random: …, 0, 1, 2, …, m – 1, 0, 1, 2, …

results from Theorem 2.1
if m is a product of distinct primes, only a = 1 produces full 
period
if m is divisible by a high power of some prime, there is 
latitude when choosing a

rules of thumb
0.01m < a < 0.99m
no simple, regular bit patterns in the binary representation

Choice of increment c

no common factor with m
c = 1
c = a

if c = 0, addition operation can be eliminated
faster processing
period length decreases



3

Choice of starting value X0

determines from where in the sequence the 
numbers are taken
to guarantee randomness, initialization from a 
varying source

built-in clock of the computer
last value from the previous run

using the same value allows to repeat the 
sequence

Tests for randomness 1(2)

Frequency test
Serial test
Gap test
Poker test
Coupon collector’s test

Tests for randomness 2(2)

Permutation test
Run test
Collision test
Birthday spacings test
Spectral test


