Alpha-beta pruning

- reduce the branching factor of nodes
- alpha value
- associated with MAX nodes
- represents the worst outcome max can achieve
- can never decrease
- beta value
- associated with min nodes
- represents the worst outcome min can achieve
- can never increase

Example

■ in a MAX node, $\alpha=4$

- we know that MAX can make a move which will result at least the value 4
- we can omit children whose value is less than or equal to 4
- in a MIN node, $\beta=4$

■ we know that MIN can make a move which will result at most the value 4

- we can omit children whose value is greater than or equal to 4

Ancestors and $\alpha \& \beta$

- alpha value of a node is never less than the alpha value of its ancestors
- beta value of a node is never greater than the beta value of its ancestors

Once again

Best-case analysis

- omit the principal variation
- at depth $d-1$ optimum pruning: each node expands one child at depth d
- at depth $d-2$ no pruning: each node expands all children at depth $d-1$
- at depth $d-3$ optimum pruning
- at depth $d-4$ no pruning, etc.
- total amount of expanded nodes: $\Omega\left(b^{d / 2}\right)$

Recapitulation

- game trees
- two-player, perfect information games
- minimax
- recurse values from the leaves
- partial game trees: n-move look-ahead
- alpha-beta pruning
- reduce the branching factor
- doubles the search depth

Prisoner's dilemma

- two criminals are arrested and isolated from each other
- police suspects they have committed a crime together but don't have enough proof
- both are offered a deal: rat on the other one and get a lighter sentence
- if one defects, he gets free whilst the other gets a long sentence
- if both defect, both get a medium sentence
- if neither one defects (i.e., they co-operate with each other), both get a short sentence

Prisoner's dilemma (cont'd)

- two players
- possible moves
- co-operate
- defect
- the dilemma: player cannot make a good decision without knowing what the other will do

Payoffs in Chicken

Payoffs in Chicken		
Driver B's move Driver A's move	Co-operate: swerve	Defect: keep going
Co-operate: swerve	Fairly good: It's a draw.	Mediocre: I'm chicken...
Defect: keep going	Good: I win!	Bad: Crash, boom, bang!!

Payoffs for prisoner A

Prisoner B's move	Co-operate: keep silent	Defect: rat on the other prisoner
Co-operate: keep silent	Fairly good: 6 months	Bad: 10 years
Defect: rat on the other prisoner	Good: no penalty	Mediocre: 5 years

Iterated prisoner's dilemma

- encounters are repeated
- players have memory of the previous encounters
- R. Axelrod: The Evolution of Cooperation (1984)
- greedy strategies tend to work poorly
- altruistic strategies work better-even if judged by selfinterest only
- Nash equilibrium: always defect!
- but sometimes rational decisions are not sensible
- Tit for Tat (A. Rapoport)
- co-operate on the first iteration
- do what the opponent did on the previous move

