Alpha-beta pruning

- reduce the branching factor of nodes
- alpha value
 - associated with MAX nodes
 - represents the worst outcome MAX can achieve
 - can never decrease

beta value

- associated with MIN nodes
- represents the worst outcome MIN can achieve
- can never increase

Example

- in a MAX node, $\alpha = 4$
 - we know that MAX can make a move which will result at least the value 4
 - we can omit children whose value is less than or equal to 4
- in a MIN node, $\beta = 4$
 - we know that MIN can make a move which will result at most the value 4
 - we can omit children whose value is greater than or equal to 4

Ancestors and α & β

- alpha value of a node is never less than the alpha value of its ancestors
- beta value of a node is never greater than the beta value of its ancestors

Rules of pruning

- 1. Prune below any MIN node having a beta value less than or equal to the alpha value of any of its MAX ancestors.
- 2. Prune below any MAX node having an alpha value greater than or equal to the beta value of any of its MIN ancestors

Or, simply put: If $\alpha \geq \beta$, then prune below!

Best-case analysis

- omit the principal variation
- at depth *d* − 1 optimum pruning: each node expands one child at depth *d*
- at depth d 2 no pruning: each node expands all children at depth d 1
- at depth d 3 optimum pruning
- at depth d 4 no pruning, etc.
- total amount of expanded nodes: $\Omega(b^{d/2})$

Recapitulation

- game trees
 - two-player, perfect information games
- minimax
 - recurse values from the leaves
 - partial game trees: *n*-move look-ahead
- alpha-beta pruning
 - reduce the branching factor
 - doubles the search depth

Prisoner's dilemma

- two criminals are arrested and isolated from each other
- police suspects they have committed a crime together but don't have enough proof
- both are offered a deal: rat on the other one and get a lighter sentence
 - if one defects, he gets free whilst the other gets a long sentence
 - if both defect, both get a medium sentence
 - if neither one defects (i.e., they co-operate with each other), both get a short sentence

Prisoner's dilemma (cont'd)

- two players
- possible moves
 - co-operate
 - defect
- the dilemma: player cannot make a good decision without knowing what the other will do

Payoffs for prisoner A

Prisoner B's move Prisoner A's move	Co-operate: keep silent	Defect: rat on the other prisoner
Co-operate: keep silent	Fairly good: 6 months	Bad: 10 years
Defect: rat on the other prisoner	Good: no penalty	Mediocre: 5 years

Driver B's move	Co-operate: swerve	Defect: keep going
Driver A's move		
Co-operate:	Fairly good:	Mediocre:
swerve	It's a draw.	I'm chicken
Defect: keep	Good:	Bad:
going	I win!	Crash, boom, bang!!

Iterated prisoner's dilemma

- encounters are repeated
- players have memory of the previous encounters
- R. Axelrod: *The Evolution of Cooperation* (1984)
 - greedy strategies tend to work poorly
 - altruistic strategies work better—even if judged by selfinterest only
- Nash equilibrium: always defect!but sometimes rational decisions are not sensible
- Tit for Tat (A. Rapoport)
 - co-operate on the first iteration
 - do what the opponent did on the previous move