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§4 Path Finding

common problem in computer games
routing characters, troops etc.

computationally intensive problem
complex game worlds
high number of entities
dynamically changing environments
real-time response

Problem statement

given a start point s and a goal point r, find a 
path from s to r minimizing a given criterion
search problem formulation 

find a path that minimizes the cost
optimization problem formulation

minimize cost subject to the constraint of the path

The three phases of path finding

1. discretize the game world
select the waypoints and connections

2. solve the path finding problem in a graph
let waypoints = vertices, connections = edges, 
costs = weights
find a minimum path in the graph

3. realize the movement in the game world
aesthetic concerns
user-interface concerns

Discretization

waypoints (vertices)
doorways, corners, obstacles, tunnels, passages, …

connections (edges)
based on the game world geometry, are two 
waypoints connected

costs (weights)
distance, environment type, difference in altitude, …

manual or automatic process?
grids, navigation meshes

Grid

regular tiling of polygons
square grid
triangular grid
hexagonal grid

tile = waypoint
tile’s neighbourhood = connections

Navigation mesh

convex partitioning of the game world geometry
convex polygons covering the game world
adjacent polygons share only two points and one 
edge
no overlapping

polygon = waypoint
middlepoints, centre of edges

adjacent polygons = connections
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Solving the convex partitioning 
problem

minimize the number of polygons
optimal solution

dynamic programming: O(r2n log n)
Hertel–Mehlhorn heuristic

number of polygons ≤ 4 × optimum
running time: O(n + r log r)

Path finding in a graph

after discretization form a graph G = (V, E)
waypoints = vertices (V)
connections = edges (E)
costs = weights of edges (weight : E → R+)

next, find a path in the graph

Graph algorithms

breadth-first search
running time: O(|V| + |E|)

depth-first search
running time: Θ(|V| + |E|)

Dijkstra’s algorithm
running time: O(|V|2)
can be improved to O(|V| log |V| + |E|)

Heuristical improvements

best-first search
order the vertices in the neighbourhood according to 
a heuristic estimate of their closeness to the goal
returns optimal solution

beam search
order the vertices but expand only the most 
promising candidates
can return suboptimal solution

Evaluation function

expand vertex minimizing
f(v) = g(s, v) + h(v, r)

g(s, v) estimates the minimum cost from the start 
vertex to v
h(v, r) estimates (heuristically) the cost from v to 
the goal vertex
if we had exact evaluation function f *, we could 
solve the problem without expanding any 
unnecessary vertices


