## §4 Path Finding

- common problem in computer games
- routing characters, troops etc.
- computationally intensive problem
- complex game worlds
- high number of entities
- dynamically changing environments
- real-time response


## Problem statement

- given a start point $s$ and a goal point $r$, find a path from $s$ to $r$ minimizing a given criterion
- search problem formulation
- find a path that minimizes the cost
- optimization problem formulation
- minimize cost subject to the constraint of the path


## The three phases of path finding

1. discretize the game world

- select the waypoints and connections

2. solve the path finding problem in a graph

- let waypoints = vertices, connections = edges, costs = weights
- find a minimum path in the graph

3. realize the movement in the game world

- aesthetic concerns
- user-interface concerns


## Discretization

- waypoints (vertices)
- doorways, corners, obstacles, tunnels, passages, ...
- connections (edges)
- based on the game world geometry, are two waypoints connected
- costs (weights)
- distance, environment type, difference in altitude, ...
- manual or automatic process?
- grids, navigation meshes


## Grid

regular tiling of polygons

- square grid
- triangular grid
- hexagonal grid
- tile = waypoint
tile's neighbourhood $=$ connections


## Navigation mesh

- convex partitioning of the game world geometry
- convex polygons covering the game world
- adjacent polygons share only two points and one edge
- no overlapping
- polygon = waypoint
- middlepoints, centre of edges
- adjacent polygons $=$ connections


## Solving the convex partitioning problem

- minimize the number of polygons
- optimal solution
- dynamic programming: $O\left(r^{2} n \log n\right)$
- Hertel-Mehlhorn heuristic
- number of polygons $\leq 4 \times$ optimum
- running time: $O(n+r \log r)$


## Graph algorithms

- breadth-first search
- running time: $O(|V|+|E|)$
- depth-first search
- running time: $\Theta(|V|+|E|)$
- Dijkstra's algorithm
- running time: $O\left(|V|^{2}\right)$
- can be improved to $O(|V| \log |V|+|E|)$


## Path finding in a graph

- after discretization form a graph $G=(V, E)$
- waypoints $=$ vertices $(V)$
- connections = edges $(E)$
- costs = weights of edges (weight $: E \rightarrow \mathbf{R}_{+}$)
- next, find a path in the graph


## Heuristical improvements

- best-first search
- order the vertices in the neighbourhood according to a heuristic estimate of their closeness to the goal
- returns optimal solution
- beam search
- order the vertices but expand only the most promising candidates
- can return suboptimal solution


## Evaluation function

- expand vertex minimizing

$$
f(v)=g(s, v)+h(v, r)
$$

- $g(s, v)$ estimates the minimum cost from the start vertex to $v$
- $b(v, r)$ estimates (heuristically) the cost from $v$ to the goal vertex
- if we had exact evaluation function $f^{*}$, we could solve the problem without expanding any unnecessary vertices

