§4 Path Finding

m common problem in computer games
m routing characters, troops etc.
m computationally intensive problem
m complex game worlds
m high number of entities
m dynamically changing environments

m real-time response

Problem statement

m given a start point s and a goal point 7, find a
path from s to 7 minimizing a given criterion
m search problem formulation
m find a path that minimizes the cost
m optimization problem formulation

® minimize cost subject to the constraint of the path

The three phases of path finding

1. discretize the game world
m  select the waypoints and connections
2. solve the path finding problem in a graph

m  let waypoints = vertices, connections = edges,
costs = weights

m  find a minimum path in the graph
3. realize the movement in the game world
| | aesthetic concerns

m  user-interface concerns

Discretization

® waypoints (vertices)
m doorways, corners, obstacles, tunnels, passages, ...
m connections (edges)

m based on the game world geometry, are two
waypoints connected

m costs (weights)
m distance, environment type, difference in altitude, ...
® manual or automatic process?

m grids, navigation meshes

Grid

m regular tiling of polygons
m square grid
m triangular grid
m hexagonal grid

m tile = waypoint

m tile’s neighbourhood = connections

Navigation mesh

m convex partitioning of the game world geometry
m convex polygons covering the game world
m adjacent polygons share only two points and one
edge
® no overlapping
® polygon = waypoint
= middlepoints, centre of edges

m adjacent polygons = connections




Solving the convex partitioning
problem

m minimize the number of polygons
m optimal solution

m dynamic programming: O(r%# log 7)
m Hertel-Mehlhorn heuristic

m number of polygons < 4 X optimum

m running time: O(z + rlog 7)

Path finding in a graph

m after discretization form a graph G = (I, E)
® waypoints = vertices (1)
m connections = edges (E)
m costs = weights of edges (weight: E — R,)

m next, find a path in the graph

Graph algorithms

m breadth-first search
m running time: O(| 1| + | E|)
m depth-first search
m running time: O(| /] + | E|)
m Dijkstra’s algorithm
® running time: O(| 17]?)
m can be improved to O(| /] log | V| + |E|)

Heuristical improvements

m best-first search

m order the vertices in the neighbourhood according to
a heuristic estimate of their closeness to the goal

m returns optimal solution
m beam search

m order the vertices but expand only the most
promising candidates

m can return suboptimal solution

Evaluation function

m expand vertex minimizing

S0) = &0, 0) + blo, 1)

m g5, ») estimates the minimum cost from the statt
vertex to v

m (v, 7) estimates (heuristically) the cost from » to
the goal vertex

m if we had exact evaluation function f~, we could
solve the problem without expanding any
unnecessary vertices




