§4 Path Finding

- common problem in computer games
 - routing characters, troops etc.
- computationally intensive problem
 - complex game worlds
 - high number of entities
 - dynamically changing environments
 - real-time response

Problem statement

- given a start point s and a goal point r, find a path from s to r minimizing a given criterion
- search problem formulationfind a path that minimizes the cost
- optimization problem formulation
 - minimize cost subject to the constraint of the path

The three phases of path finding

- 1. discretize the game world
 - select the waypoints and connections
- 2. solve the path finding problem in a graph
 - let waypoints = vertices, connections = edges, costs = weights
 - find a minimum path in the graph
 - realize the movement in the game world
 - aesthetic concerns
 - user-interface concerns

Discretization

- waypoints (vertices)
 - doorways, corners, obstacles, tunnels, passages, ...
- connections (edges)
 - based on the game world geometry, are two waypoints connected
- costs (weights)
 - distance, environment type, difference in altitude, ...
- manual or automatic process?
 - grids, navigation meshes

Grid

- regular tiling of polygons
 - square grid
 - triangular grid
 - hexagonal grid
- tile = waypoint
- tile's neighbourhood = connections

Navigation mesh

- convex partitioning of the game world geometry
 - convex polygons covering the game world
 - adjacent polygons share only two points and one edge
 - no overlapping
- polygon = waypoint
 - middlepoints, centre of edges
- adjacent polygons = connections

Solving the convex partitioning problem

- minimize the number of polygons
- optimal solution
 dynamic programming: O(r²n log n)
- Hertel–Mehlhorn heuristic
 - number of polygons $\leq 4 \times \text{optimum}$
 - running time: $O(n + r \log r)$

Path finding in a graph

- after discretization form a graph G = (V, E)
 - waypoints = vertices (V)
 - connections = edges (E)
 - costs = weights of edges (*weight* : $E \rightarrow \mathbf{R}_+$)
- next, find a path in the graph

Graph algorithms

- breadth-first search
 - running time: O(|V| + |E|)
- \blacksquare depth-first search
 - running time: $\Theta(|V| + |E|)$
- Dijkstra's algorithm
 - running time: $O(|V|^2)$
 - can be improved to $O(|V| \log |V| + |E|)$

Heuristical improvements

- best-first search
 - order the vertices in the neighbourhood according to a heuristic estimate of their closeness to the goal
- returns optimal solution
- beam search
 - order the vertices but expand only the most promising candidates
 - can return suboptimal solution

Evaluation function

expand vertex minimizing

f(v) = g(s, v) + h(v, r)

- *g*(*s*, *v*) estimates the minimum cost from the start vertex to *v*
- *h*(*v*, *r*) estimates (heuristically) the cost from *v* to the goal vertex
- if we had exact evaluation function f^{*}, we could solve the problem without expanding any unnecessary vertices