
1

Cost function g

actual cost from s to v along the cheapest path 
found so far

exact cost if G is a tree
can never underestimate the cost if G is a general 
graph

f(v) = g(s, v) and unit cost → breadth-first search
f(v) = –g(s, v) and unit cost → depth-first search

Heuristic function h

carries information from outside the graph
defined for the problem domain
the closer to the actual cost, the less superfluous 
vertices are expanded
f(v) = g(s, v) → cheapest-first search
f(v) = h(v, r) → best-first search

Admissibility

let Algorithm A be a best-first search using the 
evaluation function f
search algorithm is admissible if it finds the 
minimal path (if it exists)

if f = f *, Algorithm A is admissible
Algorithm A* = Algorithm A using an estimate 
function h

A* is admissible, if h does not overestimate the 
actual cost

Monotonicity

h is locally admissible → h is monotonic
monotonic heuristic is also admissible
actual cost is never less than the heuristic cost 
→ f will never decrease 
monotonicity → A* finds the shortest path to 
any vertex the first time it is expanded

if a vertex is rediscovered, path will not be shorter
simplifies implementation

Optimality

Optimality theorem: The first path from s to r
found by A* is optimal.
Proof: lecture notes p. 49

Informedness

the more closely h approximates h*, the better 
A* performs
if A1 using h1 will never expand a vertex that is 
not also expanded by A2 using h2, A1 is more 
informed that A2

informedness → no other search strategy with 
the same amount of outside knowledge can do less 
work than A* and be sure of finding the optimal 
solution



2

Algorithm A*

because of monotonicity
all weights must be positive 
closed list can be omitted

the path is constructed from the mapping π
starting from the goal vertex 

s → … → π(π(π(r))) → π(π(r)) → π(r) → r

Practical considerations

computing h
despite the extra vertices expanded, less informed h
may yield computationally less intensive 
implementation

suboptimal solutions
by allowing overestimation A* becomes 
inadmissible, but the results may be good enough for 
practical purposes

Search algorithms

depth-first

best-first

A*

breadth-first

Realizing the movement

movement through the waypoints
unrealistic: does not follow the game world geometry
aesthetically displeasing: straight lines and sharp 
turns

improvements
hierarchical pathing
line-of-sight testing

combining path finding to user-interface
real-time response

Recapitulation

discretization of the game world
grid, navigation mesh
waypoints, connections, costs

path finding in a graph
Algorithm A*

realizing the movement
geometric corrections
aesthetic improvements

Question

Although this is the de facto approach in 
(commercial) computer games, are there 
alternatives?
possible answers

AI processors (unrealistic?)
robotics: reactive agents (unintelligent?)
analytical approaches (inaccessible?)


