§5 Decision-Making

- decision-making and games
 - level of decision making
 - stance towards the player
 - use of the modelled knowledge
- example methods
 - influence maps
 - flocking algorithms
- this will not be a comprehensive guide into decision-making

Three perspectives for decisionmaking in computer games

- level of decision-making
 - strategic, tactical, operational
- stance towards the player
 - enemy, ally, neutral
- use of the modelled knowledge
 - prediction, production

Level of decision-making

- strategic
 - what should be done
- tactical
 - how to actuate it
- operational
 - how to carry it out

Strategic level

long-term decisions

- infrequent \rightarrow can be computed offline or in the background
- large amount of data, which is filtered to bring forth the essentials
 - quantization problem?
- speculative (what-if scenarios)
- the cost of a wrong decision is high

Tactical level

- medium-term decisions
- intermediary between strategic and operational levels
 - follow the plan made on the strategic level
 - convey the feedback from the operational level
- considers a group of entities
 - a selected set of data to be scrutinized
 - \bullet co operation within the group

Operational level

- short-term decisions
 - reactive, real time response
- concrete and closely connected to the game world
- considers individual entities
- the cost of a wrong decision is relatively low
 - of course not to the entity itself

Stance towards the player

- enemy
 - opponent
- ally
 - teammate, wingman
- neutral
 - referee, observer

Enemy

- provides challenge
- must demonstrate intelligent (or at least purposeful) behaviour
- cheating
 - quick and drty methods
 - when the human player cannot observe enemy's actions

Ally

- augmenting the user interface
 - hints and guides
- aiding the human player
 - reconnaissance officer
 - teammates
- should observe the human point of view
 - provide information in an accessible format
 - consistency of actions

Neutral

commentator

- highlighting events and providing background information
- camera director
 - choosing camera views, angles and cuts
- referee
 - judging the rule violations
- should observe the context and conventions

Use of the modelled knowledge

- time series data
- world = a generator of events and states, which can be labelled with symbols
- prediction
 - what the generator will produce next?
- production
 - simulating the output of the generator

- repulsiveness/alluringness
- recall path finding

Assumptions

- a regular grid over the game world
- each tile holds numeric information of the corresponding area
 - positive values: alluringness
 - negative values: repulsiveness

Construction

1. initialization

- assign values to the tiles where the influence exists
- 2. propagation
 - spread the effect to the neighbouring tiles
 - linear or exponential fall off
 - cut off point

Aggregation

- influence map can be combined the same (or compatible) granularity
- example
 - $\blacksquare map 1 = my troops$
 - map 2 = enemy's troops
 - map 3 = map 1 + map 2 = battlefield
- aggregation
 - operator: sum, product
 - weights: to balance the effects

Evaluation

- static features: compute beforehand
- periodical updates
 - categorize the maps based on the rate of change
 - lazy evaluation