Flocking

- C. W. Reynolds: "Flocks, herds, and schools: A distributed behavioral model" (1987)
- a flock seems to react as autonomous entity although it is a collection of individual beings
- flocking algorithm emulates this phenomenon
- results resemble various natural group movements
- boid = an autonomous agent in a flock

Rules of flocking

- 1. Separation: Do not crowd flockmates.
- 2. Alignment: Move in the same direction as flockmates.
- 3. Cohesion: Stay close to flockmates.
- 4. Avoidance: Avoid obstacles and enemies.
- \rightarrow boid's behavioural urges

Observations

- stateless algorithm
 - no information needs to be maintained
 - boid re valuates the environment on each update cycle
- no centralized control
 - emergent behaviour

Soft computing

- L. Zadeh: methodologies that try to solve problems arising from the complexity of the natural world
 - approximation
 - partial truth
 - imprecision
 - uncertainty
- computer games have used 'hard' computing
- as the game worlds get more complex, perhaps soft computing methods would suit better

Soft computing methods

- probabilistic reasoning
 - genetic algorithms
 - Bayesian networks
- artificial neural networks
 - back propagation networks
 - self organizing maps
- fuzzy logic
 - fuzzy sets
 - approximate reasoning

Recapitulation

- decision-making and games
 - level of decision making
 - stance towards the player
 - use of the modelled knowledge
- examples discussed in the lectures
 - influence maps
 - flocking algorithms
- this was hardly a comprehensive guide into decision-making