
1

§7 Code Tweaking

optimization
utilize available resources more efficiently
do not change the intended behaviour

resources
running time
internal and external memory space
interaction in the execution of the system

time/space/communication

Observations on optimization

1. consider the most dominating factor affecting 
the run time

2. compiler is programmers’ friend (and not their 
fiend)

3. optimization → obscured implementation → 
reduced maintainability

4. 20/80 rule: find and refine the hot spots
5. inherent complexity: at some point 

optimization becomes pessimization

Bit fiddling

bit b ∈ B = { 0, 1 }
n-bit word w ∈ Bn

nibble: n = 4
byte (or octet): n = 8

indexing
w = bn – 1 bn – 2… b1 b0

least significant bit (LSB): b0

most significant bit (MSB): bn – 1

Grouping bits

block of consecutive bits
position s
length l

selection of bits
mask characterizes the selection with 1-bits 

array of buckets

Bit-parallel routines

algorithmic thinking is useful also at the bitwise 
level

divide-and-conquer
dynamic programming
sieve iteration

used in restructuring the computation 
based on insights into the mathematical identities
hard to give general rules

Sets, power sets, and Gray codes

assumptions
enumerable universe of discourse
characteristic function

power set: enumerate all possible subsets
Gray code

minimize the change in the bit encoding when 
adding/removing elements to/from the set
binary-reflected n-bit Gray code



2

Example: G(4) and C(4)

1000

1001

1011

1010

1110

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

01507
11416
01305
21224
01103
11012
0901
38—0

Bit reversal

conversion approaches
naïve: looping the bits one by one
bit parallelism: operating with words
preprocessed data: reducing run-time operations

uses for bit reversal
fast Fourier transform
quasi-random numbers Example: dissolve


