§7 Code Tweaking

- optimization
 - utilize available resources more efficiently
 - do not change the intended behaviour
- resources
 - running time
 - internal and external memory space
 - interaction in the execution of the system
- time/space/communication

Observations on optimization

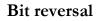
- 1. consider the most dominating factor affecting the run time
- 2. compiler is programmers' friend (and not their fiend)
- 3. optimization → obscured implementation → reduced maintainability
- 4. 20/80 rule: find and refine the hot spots
- 5. inherent complexity: at some point optimization becomes pessimization

Bit fiddling

- bit $b \in \mathbf{B} = \{0, 1\}$
- *n*-bit word $w \in \mathbf{B}^n$
 - nibble: n = 4
 - byte (or octet): n = 8
- indexing
 - $\bullet w = b_{n-1} b_{n-2} \dots b_1 b_0$
 - \blacksquare least significant bit (LSB): b_0
 - most significant bit (MSB): b_{n-1}

Grouping bits

- block of consecutive bits
 - position s
 - length *l*
- selection of bits
- mask characterizes the selection with 1-bits
- array of buckets


Bit-parallel routines

- algorithmic thinking is useful also at the bitwise level
 - divide-and-conquer
 - dynamic programming
 - sieve iteration
- used in restructuring the computation
 - based on insights into the mathematical identities
 - hard to give general rules

Sets, power sets, and Gray codes

- assumptions
 - enumerable universe of discourse
 - characteristic function
- power set: enumerate all possible subsets
- Gray code
 - minimize the change in the bit encoding when adding/removing elements to/from the set
 - binary-reflected *n*-bit Gray code

Example: <i>G</i> (4) and <i>C</i> (4)					
0	0000		8	1100	3
1	0001	0	9	1101	0
2	0011	1	10	1111	1
3	0010	0	11	1110	0
4	0110	2	12	1010	2
5	0111	0	13	1011	0
6	0101	1	14	1001	1
7	0100	0	15	1000	0

- conversion approaches
 - naïve: looping the bits one by one
 - bit parallelism: operating with words
 - preprocessed data: reducing run-time operations

Example: dissolve

- uses for bit reversal
 - fast Fourier transform
 - quasi-random numbers