
Algorithms for Computer Games 2007-09-12

© 2003–2007 Jouni Smed 1

§2 Random Numbers

 what is randomness?
 linear congruential method

 parameter choices
 testing

 random shuffling
 uses in computer games

What are random numbers good for
(according to D.E.K.)

 simulation
 sampling
 numerical analysis
 computer programming
 decision-making
 aesthetics
 recreation

Random numbers?

 there is no such thing as a ‘random number’
 is 42 a random number?

 definition: a sequence of statistically independent
random numbers with a uniform distribution
 numbers are obtained by chance
 they have nothing to do with the other numbers in

the sequence

 uniform distribution: each possible number is
equally probable

Methods

 random selection
 drawing balls out of a ‘well-stirred urn’

 tables of random digits
 decimals from π

 generating data
 white noise generators
 cosmic background radiation

 computer programs?

Generating random numbers with
arithmetic operations

 von Neumann (ca. 1946): middle square method
 take the square of previous number and extract the

middle digits

 example: four-digit numbers
 ri = 8269
 ri + 1 = 3763 (ri

2 = 68376361)
 ri + 2 = 1601 (ri + 1

2 = 14160169)
 ri + 3 = 5632 (ri + 2

2 = 2563201)

Truly random numbers?

 each number is completely determined by its
predecessor!

 sequence is not random but appears to be
 → pseudo-random numbers
 all random generators based arithmetic

operation have their own in-built characteristic
regularities

 hence, testing and analysis is required

Algorithms for Computer Games 2007-09-12

© 2003–2007 Jouni Smed 2

Middle square (revisited)

 another example:
 ri = 6100
 ri + 1 = 2100 (ri

2 = 37210000)
 ri + 2 = 4100 (ri + 1

2 = 4410000)
 ri + 3 = 8100 (ri + 2

2 = 16810000)
 ri + 4 = 6100 = ri (ri + 3

2 = 65610000)

 how to counteract?

Words of the wise

 ‘random numbers should not be generated with
a method chosen at random’
— D. E. Knuth

 ‘Any one who considers arithmetical methods of
producing random digits is, of course, in a state
of sin.’
 — J. von Neumann

Words of the more (or less) wise

 ‘We guarantee that each number is random
individually, but we don’t guarantee that more
than one of them is random.’
 — anonymous computer centre’s programming
consultant (quoted in Numerical Recipes in C)

Other concerns

 speed of the algorithm
 ease of implementation
 parallelization techniques
 portable implementations

Linear congruential method

 D. H. Lehmer (1949)
 choose four integers

 modulus: m (0 < m)
 multiplier: a (0 ≤ a < m)
 increment: c (0 ≤ c < m)
 starting value (or seed): X0 (0 ≤ X0 < m)

 obtain a sequence 〈Xn〉 by setting
Xn + 1 = (aXn + c) mod m (n ≥ 0)

Linear congruential method (cont’d)

 let b = a – 1
 generalization:

Xn + k = (akXn + (ak – 1) c/b) mod m
(k ≥ 0, n ≥ 0)

 random floating point numbers Un ∈ [0, 1):
Un = Xn / m

Algorithms for Computer Games 2007-09-12

© 2003–2007 Jouni Smed 3

Random integers from a given
interval

 Monte Carlo methods
 approximate solution
 accuracy can be improved at the cost

of running time

 Las Vegas methods
 exact solution
 termination is not guaranteed

 Sherwood methods
 exact solution, termination guaranteed
 reduce the difference between good

and bad inputs

Choice of modulus m

 sequence of random numbers is finite → period
(repeating cycle)

 period has at most m elements → modulus
should be large

 recommendation: m is a prime
 reducing modulo: m is a power of 2

 m = 2i : x mod m = x п (2i – 1)

Choice of multiplier a

 period of maximum length
 a = c = 1: Xn + 1 = (Xn + 1) mod m
 hardly random: …, 0, 1, 2, …, m – 1, 0, 1, 2, …

 results from Theorem 2.1.1
 if m is a product of distinct primes, only a = 1 produces full

period
 if m is divisible by a high power of some prime, there is

latitude when choosing a

 rules of thumb
 0.01m < a < 0.99m
 no simple, regular bit patterns in the binary representation

Choice of increment c

 no common factor with m
 c = 1
 c = a

 if c = 0, addition operation can be eliminated
 faster processing
 period length decreases

Choice of starting value X0

 determines from where in the sequence the
numbers are taken

 to guarantee randomness, initialization from a
varying source
 built-in clock of the computer
 last value from the previous run

 using the same value allows to repeat the
sequence

Tests for randomness 1(2)

 Frequency test
 Serial test
 Gap test
 Poker test
 Coupon collector’s test

Algorithms for Computer Games 2007-09-12

© 2003–2007 Jouni Smed 4

Tests for randomness 2(2)

 Permutation test
 Run test
 Collision test
 Birthday spacings test
 Spectral test

Spectral test

 good generators will pass it
 bad generators are likely to fail it
 idea:

 let the length of the period be m
 take t consecutive numbers
 construct a set of t-dimensional points:

{ (Xn, Xn + 1, …, Xn + t – 1) | 0 ≤ n < m }
 when t increases the periodic accuracy decreases

 a truly random sequence would retain the accuracy

