
Algorithms for Computer Games 2007-09-19

© 2003–2007 Jouni Smed 1

§4 Game Trees

 perfect information games
 no hidden information

 two-player, perfect information games
 Noughts and Crosses
 Chess
 Go

 imperfect information games
 Poker
 Backgammon
 Monopoly

 zero-sum property
 one player’s gain equals another player’s loss

Game tree

 all possible plays of two-player, perfect
information games can be represented with a
game tree
 nodes: positions (or states)
 edges: moves

 players: MAX (has the first move) and MIN

 ply = the length of the path between two nodes
 MAX has even plies counting from the root node
 MIN has odd plies counting from the root node

Division Nim with seven matches

Problem statement

Given a node v in a game tree

find a winning strategy for MAX (or MIN) from v

or (equivalently)

show that MAX (or MIN) can force a win from v

Minimax

 assumption: players are rational and try to win
 given a game tree, we know the outcome in the leaves

 assign the leaves to win, draw, or loss (or a numeric value like
+1, 0, –1) according to MAX’s point of view

 at nodes one ply above the leaves, we choose the best
outcome among the children (which are leaves)
 MAX: win if possible; otherwise, draw if possible; else loss
 MIN: loss if possible; otherwise, draw if possible; else win

 recurse through the nodes until in the root

Algorithms for Computer Games 2007-09-19

© 2003–2007 Jouni Smed 2

Minimax rules

1. If the node is labelled to MAX, assign it to the
maximum value of its children.

2. If the node is labelled to MIN, assign it to the
minimum value of its children.

 MIN minimizes, MAX maximizes → minimax

MAX

MAX

MAX

MIN

MIN

MIN
+1

–1

+1

+1

+1 –1

–1+1+1 –1

–1 –1 –1

–1

Analysis

 simplifying assumptions
 internal nodes have the same branching factor b
 game tree is searched to a fixed depth d

 time consumption is proportional to the number of
expanded nodes
 1 — root node (the initial ply)
 b — nodes in the first ply
 b2 — nodes in the second ply
 bd — nodes in the dth ply

 overall running time O(bd)

Rough estimates on running
times when d = 5

 suppose expanding a node takes 1 ms
 branching factor b depends on the game
 Draughts (b ≈ 3): t = 0.243 s
 Chess (b ≈ 30): t = 6¾ h
 Go (b ≈ 300): t = 77 a
 alpha-beta pruning reduces b

Controlling the search depth

 usually the whole game tree is too large
→ limit the search depth
→ a partial game tree
→ partial minimax

 n-move look-ahead strategy
 stop searching after n moves
 make the internal nodes (i.e., frontier nodes) leaves
 use an evaluation function to ‘guess’ the outcome

Evaluation function

 combination of numerical measurements
mi(s, p) of the game state
 single measurement: mi(s, p)
 difference measurement: mi(s, p) − mj(s, q)
 ratio of measurements: mi(s, p) / mj(s, q)

 aggregate the measurements maintaining the
zero-sum property

Algorithms for Computer Games 2007-09-19

© 2003–2007 Jouni Smed 3

Example: Noughts and Crosses

 heuristic evaluation function e:
 count the winning lines open to MAX

 subtract the number of winning lines open to MIN

 forced wins
 state is evaluated +∞, if it is a forced win for MAX

 state is evaluated –∞, if it is forced win for MIN

Examples of the evaluation

e(•) = 6 – 5 = 1

e(•) = 4 – 5 = –1

e(•) = +∞

Drawbacks of partial minimax

 horizon effect
 heuristically promising path can lead to an unfavourable

situation
 staged search: extend the search on promising nodes
 iterative deepening: increase n until out of memory or time
 phase-related search: opening, midgame, end game
 however, horizon effect cannot be totally eliminated

 bias
 we want to have an estimate of minimax but get a minimax of

estimates
 distortion in the root: odd plies → win, even plies → loss

The deeper the better...?

 assumptions:
 n-move look-ahead
 branching factor b, depth d,
 leaves with uniform random distribution

 minimax convergence theorem:
 n increases → root value converges to f(b, d)

 last player theorem:
 root values from odd and even plies not comparable

 minimax pathology theorem:
 n increases → probability of selecting non-optimal move

increases (← uniformity assumption!)

Alpha-beta pruning

 reduce the branching factor of nodes
 alpha value

 associated with MAX nodes
 represents the worst outcome MAX can achieve
 can never decrease

 beta value
 associated with MIN nodes
 represents the worst outcome MIN can achieve
 can never increase

Example

 in a MAX node, α = 4
 we know that MAX can make a move which will

result at least the value 4
 we can omit children whose value is less than or

equal to 4
 in a MIN node, β = 4

 we know that MIN can make a move which will result
at most the value 4

 we can omit children whose value is greater than or
equal to 4

Algorithms for Computer Games 2007-09-19

© 2003–2007 Jouni Smed 4

Rules of pruning

1. Prune below any MIN node having a beta value
less than or equal to the alpha value of any of
its MAX ancestors.

2. Prune below any MAX node having an alpha
value greater than or equal to the beta value of
any of its MIN ancestors

Or, simply put: If α ≥ β, then prune below!

Best-case analysis

 omit the principal variation
 at depth d – 1 optimum pruning: each node

expands one child at depth d
 at depth d – 2 no pruning: each node expands all

children at depth d – 1
 at depth d – 3 optimum pruning
 at depth d – 4 no pruning, etc.
 total amount of expanded nodes: Ω(bd/2)

Principal variation search

 alpha-beta range should be small
 limit the range artificially → aspiration search
 if search fails, revert to the original range

 if we find a move between α and β, assume we have
found a principal variation node
 search the rest of nodes the assuming they will not produce a

good move

 if the assumption fails, re-search the node

 works well if the principal variation node is likely to get
selected first

Games of chance

 minimax trees assume determistic moves
 what about indeterministic events like tossing a coin,

casting a die or shuffling cards?

 chance nodes: *-minimax tree
 expectiminimax

 if node v is labelled to CHANCE, multiply the
probability of a child with its expectiminimax value
and return the sum over all v’s children

 otherwise, act as in minimax

