Algorithms for Computer Games

Problem statement

Given a node v in a game tree

find a winning strategy for MAX (or MIN) from v

or (equivalently)

show that MAX (or MIN) can force a win from v

Minimax

- assumption: players are rational and try to win
 - given a game tree, we know the outcome in the leaves assign the leaves to win, draw, or loss (or a numeric value like +1, 0, -1) according to MAX's point of view
- at nodes one ply above the leaves, we choose the best outcome among the children (which are leaves)
 - MAX: win if possible; otherwise, draw if possible; else loss
 - MIN: loss if possible; otherwise, draw if possible; else win
- recurse through the nodes until in the root

- 1. If the node is labelled to MAX, assign it to the maximum value of its children.
- 2. If the node is labelled to MIN, assign it to the minimum value of its children.
- MIN minimizes, MAX maximizes → minimax

Analysis

- simplifying assumptions
 internal nodes have the same branching factor b
- game tree is searched to a fixed depth *d*time consumption is proportional to the number of
 - expanded nodes
 - 1 root node (the initial ply)
 - *b* nodes in the first ply
 - b^2 nodes in the second ply
 - \mathcal{V} nodes in the *d*th ply
- overall running time O(b^d)

Rough estimates on running times when d = 5 suppose expanding a node takes 1 ms branching factor b depends on the game Draughts (b ≈ 3): t = 0.243 s Chess (b ≈ 30): t = 6³/₄ h

- Go ($b \approx 300$): t = 77 a
- alpha-beta pruning reduces b

Controlling the search depth

- usually the whole game tree is too large
 - \rightarrow limit the search depth
 - \rightarrow a partial game tree
 - → partial minimax
- *n*-move look-ahead strategy
 - stop searching after *n* moves
 - make the internal nodes (i.e., frontier nodes) leaves
 - use an evaluation function to 'guess' the outcome

Evaluation function

- combination of numerical measurements
 m_i(*s*, *p*) of the game state
 - single measurement: $m_i(s, p)$
 - difference measurement: $m_i(s, p) m_j(s, q)$
 - ratio of measurements: $m_i(s, p) / m_i(s, q)$
- aggregate the measurements maintaining the zero-sum property

Example: Noughts and Crosses

- heuristic evaluation function *e*:
 - count the winning lines open to MAX
 - subtract the number of winning lines open to MIN
- forced wins
 - state is evaluated $+\infty$, if it is a forced win for MAX
 - state is evaluated $-\infty$, if it is forced win for MIN

Examples of the evaluation $e(\bullet) = 6 - 5 = 1$ $e(\bullet) = 4 - 5 = -1$ $e(\bullet) = +\infty$

Drawbacks of partial minimax

- horizon effect
 - heuristically promising path can lead to an unfavourable situation
 - staged search: extend the search on promising nodes
 - iterative deepening: increase *n* until out of memory or time
 - phase-related search: opening, midgame, end gamehowever, horizon effect cannot be totally eliminated
- bias
 - we want to have an estimate of minimax but get a minimax of estimates
 - distortion in the root: odd plies \rightarrow win, even plies \rightarrow loss

The deeper the better...?

- assumptions:
 - *n*-move look-ahead
 - branching factor b, depth d,
 - leaves with uniform random distribution
- minimax convergence theorem:
- *n* increases \rightarrow root value converges to *f*(*b*, *d*)
- last player theorem:
 root values from odd and even plies not comparable
- minimax pathology theorem:
 n increases → probability of selecting non-optimal move increases (← uniformity assumption!)

Alpha-beta pruning

- reduce the branching factor of nodes
- alpha value
 - associated with MAX nodes
 - represents the worst outcome MAX can achieve
 - can never decrease
- beta value
 - associated with MIN nodes
 - represents the worst outcome MIN can achieve
 - can never increase

Example

- in a MAX node, $\alpha = 4$
 - we know that MAX can make a move which will result at least the value 4
 - we can omit children whose value is less than or equal to 4
- in a MIN node, $\beta = 4$
 - we know that MIN can make a move which will result at most the value 4
 - we can omit children whose value is greater than or equal to 4

Rules of pruning

- 1. Prune below any MIN node having a beta value less than or equal to the alpha value of any of its MAX ancestors.
- 2. Prune below any MAX node having an alpha value greater than or equal to the beta value of any of its MIN ancestors

Or, simply put: If $\alpha \geq \beta$, then prune below!

Best-case analysis

- omit the principal variation
- at depth *d* − 1 optimum pruning: each node expands one child at depth *d*
- at depth d 2 no pruning: each node expands all children at depth d 1
- at depth d 3 optimum pruning
- at depth d 4 no pruning, etc.
- total amount of expanded nodes: $\Omega(b^{d/2})$

Principal variation search

- alpha-beta range should be small
- limit the range artificially → aspiration search
 if search fails, revert to the original range
- if we find a move between α and β, assume we have found a principal variation node
 - search the rest of nodes the assuming they will not produce a good move
 - if the assumption fails, re-search the node
- works well if the principal variation node is likely to get selected first

Games of chance

- minimax trees assume determistic moves
 what about indeterministic events like tossing a coin, casting a die or shuffling cards?
- chance nodes: *-minimax tree
- expectiminimax
 - if node *v* is labelled to CHANCE, multiply the probability of a child with its expectiminimax value and return the sum over all *v*'s children
 - otherwise, act as in minimax