§5 Path Finding

- common problem in computer games
- routing characters, troops etc.
- computationally intensive problem
- complex game worlds
- high number of entities
- dynamically changing environments
- real-time response

Problem statement

- given a start point s and a goal point r, find a path from s to r minimizing a given criterion
- search problem formulation
- find a path that minimizes the cost
- optimization problem formulation
- minimize cost subject to the constraint of the path

The three phases of path finding

1. discretize the game world

- select the waypoints and connections

2. solve the path finding problem in a graph

- let waypoints = vertices, connections = edges, costs $=$ weights
- find a minimum path in the graph
realize the movement in the game world
- aesthetic concerns
- user-interface concerns

Discretization

waypoints (vertices)

- doorways, corners, obstacles, tunnels, passages, ...
- connections (edges)
- based on the game world geometry, are two waypoints connected
- costs (weights)
- distance, environment type, difference in altitude, ...
- manual or automatic process?
- grids, navigation meshes

Navigation mesh

convex partitioning of the game world geometry

- convex polygons covering the game world
- adjacent polygons share only two points and one edge
- no overlapping
- polygon = waypoint
- middlepoints, centre of edges
- adjacent polygons $=$ connections

Solving the convex partitioning problem

- minimize the number of polygons
- points: n
- points with concave interior angle (notches): $r \leq n-3$
- optimal solution
- dynamic programming: $O\left(r^{2} n \log n\right)$
- Hertel-Mehlhorn heuristic
- number of polygons $\leq 4 \times$ optimum
- running time: $O(n+r \log r)$
- requires triangulation
- running time: $O(n)$ (at least in theory)
- Seidel's algorithm: $\mathrm{O}\left(n \lg ^{*} n\right)$ (also in practice)

Path finding in a graph

- after discretization form a graph $G=(V, E)$
- waypoints $=$ vertices (V)
- connections $=$ edges (E)
- costs = weights of edges (weight : $\mathrm{E} \rightarrow \mathbf{R}_{+}$)
- next, find a path in the graph

Heuristical improvements

- best-first search
- order the vertices in the neighbourhood according to a heuristic estimate of their closeness to the goal
- returns optimal solution
- beam search
- order the vertices but expand only the most promising candidates
- can return suboptimal solution

Evaluation function

expand vertex minimizing

$$
f(v)=g(s \sim>v)+h(v \sim>r)
$$

- $g(s \sim>v)$ estimates the minimum cost from the start vertex to v
- $b(v \sim>r)$ estimates (heuristically) the cost from v to the goal vertex
- if we had exact evaluation function f^{*}, we could solve the problem without expanding any unnecessary vertices

