
Algorithm for Computer Games 2007-09-24

© 2003–2007 Jouni Smed 1

Cost function g

 actual cost from s to v along the cheapest path
found so far
 exact cost if G is a tree
 can never underestimate the cost if G is a general

graph

 f(v) = g(s ~> v) and unit cost
→ breadth-first search

 f(v) = –g(s ~> v) and unit cost
→ depth-first search

Heuristic function h

 carries information from outside the graph
 defined for the problem domain
 the closer to the actual cost, the less superfluous

vertices are expanded
 f(v) = g(s ~> v) → cheapest-first search
 f(v) = h(v ~> r) → best-first search

Admissibility

 let Algorithm A be a best-first search using the
evaluation function f

 search algorithm is admissible if it finds the
minimal path (if it exists)
 if f = f *, Algorithm A is admissible

 Algorithm A* = Algorithm A using an estimate
function h
 A* is admissible, if h does not overestimate the

actual cost

Monotonicity

 h is locally admissible → h is monotonic
 monotonic heuristic is also admissible
 actual cost is never less than the heuristic cost
→ f will never decrease

 monotonicity → A* finds the shortest path to
any vertex the first time it is expanded
 if a vertex is rediscovered, path will not be shorter
 simplifies implementation

Optimality

 Optimality theorem: The first path from s to r
found by A* is optimal.

 Proof: textbook p. 105

Informedness

 the more closely h approximates h*, the better A*
performs

 if A1 using h1 will never expand a vertex that is
not also expanded by A2 using h2, A1 is more
informed that A2

 informedness → no other search strategy with
the same amount of outside knowledge can do less
work than A* and be sure of finding the optimal
solution



Algorithm for Computer Games 2007-09-24

© 2003–2007 Jouni Smed 2

Algorithm A*

 because of monotonicity
 all weights must be positive
 closed list can be omitted

 the path is constructed from the mapping π
starting from the goal vertex
 s → … → π(π(π(r))) → π(π(r)) → π(r) → r

Practical considerations

 computing h
 despite the extra vertices expanded, less informed h

may yield computationally less intensive
implementation

 suboptimal solutions
 by allowing overestimation A* becomes

inadmissible, but the results may be good enough for
practical purposes

Realizing the movement

 movement through the waypoints
 unrealistic: does not follow the game world

geometry
 aesthetically displeasing: straight lines and sharp

turns

 improvements
 line-of-sight testing
 obstacle avoidance

 combining path finding to user-interface
 real-time response

Recapitulation

1. discretization of the game world
 grid, navigation mesh
 waypoints, connections, costs

2. path finding in a graph
 Algorithm A*

3. realizing the movement
 geometric corrections
 aesthetic improvements

Alternatives?

 Although this is the de facto approach in
(commercial) computer games, are there
alternatives?

 possible answers
 AI processors (unrealistic?)
 robotics: reactive agents (unintelligent?)
 analytical approaches (inaccessible?)


