
Algorithms for Computer Games 2007-09-26

© 2003–2007 Jouni Smed 1

§6 Decision-Making

 decision-making and games
 levels of decision-making
 modelled knowledge
 method

 example methods
 finite state machines
 flocking algorithms
 influence maps

 this will not be a comprehensive guide into decision-
making!

MVC (revisited)

control logic

driver

proto-view

rendering

state instance core structures

input
device

action

configuration

instance data

synthetic
view

synthetic
 player

script output
device

human player

options

perception

model

viewcontroller

Decision-making system

World Pattern
recognition

Observed events
and states

Decision-
making system

Requested
actions

Possible actions

Primitive events
and states

Previous
primitives

Three perspectives for decision-
making in computer games

 level of decision-making
 strategic, tactical, operational

 use of the modelled knowledge
 prediction, production

 methods
 optimization, adaptation

Level of decision-making

 strategic
 what should be done

 tactical
 how to actuate it

 operational
 how to carry it out

Strategic level

 long-term decisions
 infrequent → can be computed offline or in the

background

 large amount of data, which is filtered to bring
forth the essentials
 quantization problem?

 speculative (what-if scenarios)
 the cost of a wrong decision is high



Algorithms for Computer Games 2007-09-26

© 2003–2007 Jouni Smed 2

Tactical level

 medium-term decisions
 intermediary between strategic and operational

levels
 follow the plan made on the strategic level
 convey the feedback from the operational level

 considers a group of entities
 a selected set of data to be scrutinized
 co-operation within the group

Operational level

 short-term decisions
 reactive, real-time response

 concrete and closely connected to the game
world

 considers individual entities
 the cost of a wrong decision is relatively low

 of course not to the entity itself

Use of the modelled knowledge

 time series data
 world = a generator of events and states, which

can be labelled with symbols
 prediction

 what the generator will produce next?

 production
 simulating the output of the generator

 how to cope with uncertainty?

Prediction

Modeller

maximum
probabilityGenerator

Production

Modeller

random
selection from 

probability
distribution

Decision-making methods

 optimization
 find an optimal solution for a given objective

function
 affecting factors can be modelled

 adaption
 find a function behind the given solutions
 affecting factors are unknown or dynamic



Algorithms for Computer Games 2007-09-26

© 2003–2007 Jouni Smed 3

Optimization

solution

optimality

local
optimum

global
optimum

objective
function

Optimization methods

 hill-climbing
 how to escape local optima?

 tabu search
 simulated annealing
 genetic algorithms

 multiple search traces

 swarm algorithms

Adaptation

solution

feedback

sample cases

fitted function

Adaptation methods

 neural networks
 training

 supervised learning
 unsupervised learning (e.g., self-organizing maps)

 execution

 hidden Markov model
 recurring structures

Finite state machine (FSM)

 components:
 states
 transitions
 events
 actions

 state chart: fully connected directed graph
 vertices = states
 edges = transitions

Properties of FSM

1. acceptor
 does the input sequence fulfil given criteria?

2. transducer
 what is the corresponding output sequence for a

given input sequence?
3. computator

 what is the sequence of actions for a given input
sequence?

 these properties are independent!



Algorithms for Computer Games 2007-09-26

© 2003–2007 Jouni Smed 4

Mealy and Moore machines

 theoretical cathegories for FSMs
 Mealy machine

 actions are in transitions
 the next action is determined by the current state and the

occurring event
 more compact but harder to comprehend

 Moore machine
 actions are in states
 the next action is determined by the next state

 helps to understand and use state machines in UML

Implementation

 design by contract
 two parties: the supplier and the client
 formal agreement using interfaces

 FSM software components
 environment: view to the FSM (client)
 context: handles the dynamic aspects of the FSM

(supplier)
 structure: maintains the representation of the FSM

(supplier)

Noteworthy

 structure is static
 hard to modify

 reactivity
 memoryless representation of all possible walks from the

initial state
 states are mutually exclusive: one state at a time

 not for continuous or multivalued values
 combinatorial explosion

 if the states and events are independent
 risk of total rewriting

 high cohesion of actions


