

Three perspectives for decisionmaking in computer games

- level of decision-making
 strategic, tactical, operational
- use of the modelled knowledgeprediction, production
- methods
 - optimization, adaptation

the cost of a wrong decision is high

Tactical level

- medium-term decisions
- intermediary between strategic and operational levels
 - follow the plan made on the strategic level
 - convey the feedback from the operational level
- considers a group of entities
 - a selected set of data to be scrutinized
 - co-operation within the group

Operational level

- short-term decisionsreactive, real-time response
- concrete and closely connected to the game world
- considers individual entities
- the cost of a wrong decision is relatively low
 - of course not to the entity itself

Use of the modelled knowledge

- time series data
- world = a generator of events and states, which can be labelled with symbols
- prediction
 - what the generator will produce next?
- production
 - simulating the output of the generator
- how to cope with uncertainty?

Decision-making methods

- optimization
 - find an optimal solution for a given objective function
 - affecting factors can be modelled
- adaption
 - find a function behind the given solutions
 - affecting factors are unknown or dynamic

Optimization methods

- hill-climbing
 - how to escape local optima?
- tabu search
- simulated annealing
- genetic algorithms
- multiple search traces
- swarm algorithms

recurring structures

Finite state machine (FSM)

- components:
 - states
 - transitions
 - events
 - actions
- state chart: fully connected directed graph
 - vertices = states
 - edges = transitions

Properties of FSM

- 1. acceptor
 - does the input sequence fulfil given criteria?
- 2. transducer
 - what is the corresponding output sequence for a given input sequence?
- 3. computator
 - what is the sequence of actions for a given input sequence?
- these properties are independent!

Mealy and Moore machines

- theoretical cathegories for FSMs
- Mealy machine
 - actions are in transitions
 - the next action is determined by the current state and the occurring event
 - more compact but harder to comprehend
- Moore machine
 - actions are in states
 - the next action is determined by the next state
- helps to understand and use state machines in UML

Implementation

- design by contract
 - two parties: the supplier and the client
 - formal agreement using interfaces
- FSM software components
 - environment: view to the FSM (client)
 - context: handles the dynamic aspects of the FSM (supplier)
 - structure: maintains the representation of the FSM (supplier)

Noteworthy

- structure is static
 - hard to modify
- reactivity
 - memoryless representation of all possible walks from the initial state
- states are mutually exclusive: one state at a time
 not for continuous or multivalued values
- combinatorial explosion
- if the states and events are independent
- risk of total rewritinghigh cohesion of actions