\$7 Modelling Uncertainty

- probabilistic uncertainty
- probability of an outcome
- dice, shuffled cards
- statistical reasoning
- Bayesian networks, Dempster-Shafer theory
- possibilistic uncertainty
- possibility of classifying object
- sorites paradoxes
- fuzzy sets

Probabilistic or possibilistic uncertainty?

- Is the vase broken?
- Is the vase broken by a burglar?
- Is there a burglar in the closet?
- Is the burglar in the closet a man?
- Is the man in the closet a burglar?

Example

- H - there is a bug in the code
- E - a bug is detected in the test
- $E \mid H$ - a bug is detected in the test given that there is a bug in the code
- $H \mid E$ - there is a bug in the code given that a bug is detected in the test

Bayesian networks

- describe cause-and-effect relationships with a directed graph
- vertices = propositions or variables
- edges $=$ dependencies as probabilities
- propagation of the probabilities
- problems:
- relationships between the evidence and hypotheses are known
- establishing and updating the probabilities

Dempster-Shafer theory

- belief about a proposition as an interval [belief, plausability $] \subseteq[0,1]$
- belief supporting $A: \operatorname{Bel}(A)$
- plausability of $A: \operatorname{Pl}(A)=1-\operatorname{Bel}(\neg A)$
- $\operatorname{Bel}($ intruder $)=0.3, \mathrm{Pl}($ intruder $)=0.8$
- $\operatorname{Bel}($ no intruder $)=0.2$
- 0.5 of the probability range is indeterminate

Belief interval

Example 1(5)

- hypotheses: animal, weather, trap, enemy - $\Theta=\{A, W, T, E\}$
- task: assign a belief value for each hypothesis - evidence can affect one or more hypotheses
- mass function $m(H)=$ current belief to the set H of hypotheses
- in the beginning $m(\boldsymbol{\Theta})=1$
- evidence 'noise' supports A, W and E
- mass function $m_{n}(\{A, W, E\})=0.6, m_{n}(\boldsymbol{\Theta})=0.4$

Example 2(3)

evidence 'footprints' supports A, T, E

- $m_{\mathcal{f}}(\{A, T, E\})=0.8, m_{f}(\boldsymbol{\Theta})=0.2$
- combination with Dempster's rule:
- $m_{n j}(\{A, E\})=0.48, m_{n j}(\{W, A, E\})=0.12$, $m_{M j}(\{A, T, E\})=0.32, m_{w j}(\boldsymbol{\Theta})=0.08$
- enemy, trap, trap or enemy, weather, or animal?
- $\operatorname{Bel}(E)=0, \operatorname{Pl}(E)=1$
- $\operatorname{Bel}(T)=0, \operatorname{Pl}(T)=0.4$
- $\operatorname{Bel}(T, E)=0, \operatorname{Pl}(T, E)=1$
- $\operatorname{Bel}(\mathbb{W})=0, \operatorname{Pl}(W)=0.2$
- $\operatorname{Bel}(A)=0, \operatorname{Pl}(A)=1$

Example 3(3)

- evidence 'candy wrapper' supports T, E
- $m_{c}(\{E\})=0.6, m_{c}(\{T\})=0.3, m_{d}(\boldsymbol{\Theta})=0.1$
- combination with Dempster's rule:
- $m_{n f \in}(\{E\})=0.73, m_{n f d}(\{T\})=0.15$,
$m_{\text {nff }}(\{A, E\})=0.06, m_{\text {nf }}(\{A, T, E\})=0.04$,
$m_{n f f}(\{W, A, E\})=0.01, m_{\text {nfi }}(\boldsymbol{\theta})=0.01$
- enemy, trap, trap or enemy, weather, or animal?
- $\operatorname{Bel}(E)=0.73, \operatorname{Pl}(E)=0.85$
- $\operatorname{Bel}(T)=0.15, \mathrm{Pl}(T)=0.2$
- $\operatorname{Bel}(T, E)=0.88, \operatorname{Pl}(T, E)=1$
- $\operatorname{Bel}(W)=0, \operatorname{Pl}(W)=0.02$
- $\operatorname{Bel}(A)=0, \operatorname{Pl}(A)=0.03$

Fuzzy sets

- element x has a membership in the set A defined by a membership function $\mu_{A}(x)$
- not in the set: $\boldsymbol{\mu}_{A}(x)=0$
- fully in the set: $\mu_{A}(x)=1$
- partially in the set: $0<\mu_{A}(x)<1$
- contrast to classical 'crisp' sets
- not in the set: $\chi_{A}(x)=0$
- in the set: $\chi_{A}(x)=1$

How to assign membership functions?

- real-word data
- physical measurements
- statistical data
- subjective evaluation
- human experts' cognitive knowledge
- questionnaires, psychological tests
- adaptation
- neural networks, genetic algorithms
- \rightarrow simple functions usually work well enough as long as they model the general trend

Fuzzy operations

- union: $\boldsymbol{\mu}_{C}(x)=\max \left\{\boldsymbol{\mu}_{A}(x), \boldsymbol{\mu}_{B}(x)\right\}$
- intersection: $\boldsymbol{\mu}_{C}(x)=\min \left\{\boldsymbol{\mu}_{A}(x), \boldsymbol{\mu}_{B}(x)\right\}$
- complement: $\mu_{C}(x)=1-\mu_{A}(x)$
- note: operations can be defined differently

Uses for fuzzy sets

approximate reasoning
fuzzy constraint satisfaction problem

- fuzzy numbers
- almost any ‘crisp’ method can be fuzzified!

