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§7 Modelling Uncertainty

 probabilistic uncertainty
 probability of an outcome
 dice, shuffled cards
 statistical reasoning

 Bayesian networks, Dempster-Shafer theory

 possibilistic uncertainty
 possibility of classifying object
 sorites paradoxes
 fuzzy sets

Probabilistic or possibilistic
uncertainty?

 Is the vase broken?
 Is the vase broken by a burglar?
 Is there a burglar in the closet?
 Is the burglar in the closet a man?
 Is the man in the closet a burglar?

Bayes’ theorem

 hypothesis H
 evidence E
 probability of the hypothesis P(H)
 probability of the evidence P(E)
 probability of the hypothesis based on the

evidence
P(H|E) = (P(E|H) · P(H)) / P(E)

Example

 H — there is a bug in the code
 E — a bug is detected in the test
 E|H — a bug is detected in the test given that

there is a bug in the code
 H|E — there is a bug in the code given that a

bug is detected in the test

Example (cont’d)

 P(H) = 0.10
 P(E|H) = 0.90
 P(E|¬H) = 0.10
 P(E) = P(E|H) · P(H) + P(E|¬H) · P(¬H)

= 0.18
 from Bayes’ theorem:
P(H|E) = 0.5

 conclusion: a detected bug has fifty-fifty chance
that it is not in the actual code

Bayesian networks

 describe cause-and-effect relationships with a
directed graph
 vertices = propositions or variables
 edges = dependencies as probabilities

 propagation of the probabilities
 problems:

 relationships between the evidence and hypotheses
are known

 establishing and updating the probabilities
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Dempster-Shafer theory

 belief about a proposition as an interval
[ belief, plausability ] ⊆ [ 0, 1]

 belief supporting A: Bel(A)
 plausability of A: Pl(A) = 1 − Bel(¬A)
 Bel(intruder) = 0.3, Pl(intruder) = 0.8

 Bel(no intruder) = 0.2
 0.5 of the probability range

is indeterminate

Belief interval

0 1Bel(A) Pl(A)

Belief Uncertainty Non-belief

Plausability

Doubt

Example 1(5)

 hypotheses: animal, weather, trap, enemy
 Θ = { A, W, T, E}

 task: assign a belief value for each hypothesis
 evidence can affect one or more hypotheses

 mass function m(H) = current belief to the set H
of hypotheses
 in the beginning m(Θ) = 1

 evidence ‘noise’ supports A, W and E
 mass function mn({ A, W, E }) = 0.6, mn(Θ) = 0.4

Example 2(3)

 evidence ‘footprints’ supports A, T, E
 mf({ A, T, E }) = 0.8, mf(Θ) = 0.2

 combination with Dempster’s rule:
 mnf({A, E}) = 0.48, mnf({W, A, E}) = 0.12,
mnf({A, T, E}) = 0.32, mnf(Θ) = 0.08

 enemy, trap, trap or enemy, weather, or animal?
 Bel(E) = 0, Pl(E) = 1
 Bel(T) = 0, Pl(T) = 0.4
 Bel(T, E) = 0, Pl(T, E) = 1
 Bel(W) = 0, Pl(W) = 0.2
 Bel(A) = 0, Pl(A) = 1

Example 3(3)

 evidence ‘candy wrapper’ supports T, E
 mc({E}) = 0.6, mc({T}) = 0.3, mc(Θ) = 0.1

 combination with Dempster’s rule:
 mnfc({E}) = 0.73, mnfc({T}) = 0.15,
mnfc({A, E}) = 0.06, mnfc({A, T, E}) = 0.04,
mnfc({W, A, E}) = 0.01, mnfc(Θ) = 0.01

 enemy, trap, trap or enemy, weather, or animal?
 Bel(E) = 0.73, Pl(E) = 0.85
 Bel(T) = 0.15, Pl(T) = 0.2
 Bel(T, E) = 0.88, Pl(T, E) = 1
 Bel(W) = 0, Pl(W) = 0.02
 Bel(A) = 0, Pl(A) = 0.03

Fuzzy sets

 element x has a membership in the set A
defined by a membership function μA(x)
 not in the set: μA(x) = 0
 fully in the set: μA(x) = 1
 partially in the set: 0 < μA(x) < 1

 contrast to classical ‘crisp’ sets
 not in the set: χA(x) = 0
 in the set: χA(x) = 1
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How to assign membership
functions?

 real-word data
 physical measurements
 statistical data

 subjective evaluation
 human experts’ cognitive knowledge
 questionnaires, psychological tests

 adaptation
 neural networks, genetic algorithms

 → simple functions usually work well enough as long
as they model the general trend

Fuzzy operations

 union: μC(x) = max{μA(x), μB(x)}
 intersection: μC(x) = min{μA(x), μB(x)}
 complement: μC(x) = 1 − μA(x)

 note: operations can be defined differently

Fuzzy operations (cont’d)
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Uses for fuzzy sets

 approximate reasoning
 fuzzy constraint satisfaction problem
 fuzzy numbers
 almost any ‘crisp’ method can be fuzzified!


