
1

Bridge

Gof classification: object structural
Other classification: Interface

... towards the Bridge Pattern

2

A fresh look at encapsulation

• Remember: encapsulation is more than hiding data
• Multiple levels of encapsulation

– encapsulation of data, methods, subclasses, algorithms,
objects...

• Inheritance as a concept vs. inheritance for reuse
• Design patterns use inheritance for classifying and

hiding
• ”Find what varies and encapsulate it”

– hide classes with inheritance
– hide objects with e.g. adapters

• many design patterns use encapsulation to define layers
between objects – enabling the designer to change
things on different sides of the layers without affecting
the other

A fresh look at encapsulation

• Example: modeling characteristics of animals
– each type of animal can have different number of legs

(integer)
– each type of animal can have different type of

movement fly, walk or crawl
– an animal must be able to return the number of legs

when asked
– an animal must be able to calculate how long it would

take to move a distance given the type of terrain

• What kind of design would you create?

3

A fresh look at encapsulation

• Typical way of handling variation in number of
legs is to have a data member for storing it and
methods for setting and getting it

• Typically we take a different approach for
handling variation in movement type
– use a member flag to indicate the type of movement

type and choosing different code in the movement
method accordingly

• problem: tight coupling, messy code if flag starts implying
other differences

– having different types of Animals derived from base
Animal class

• problem: need to manage subtypes of animals, cannot have
animals that have more than one type of movement

• subtyping based on one property of animals, what about
classifying them as mammals, reptiles and birds?

A fresh look at encapsulation
• Third possibility for modeling variation in movement: encapsulate

movement (behavior) into a class and have animal class contain an
object that has the appropriate behavior

• May look like overkill at first, but it is analogous to having a member
containing the number of legs, nothing else.
– Number of legs, type of movement – what is the difference?

AnimalMovement

AnimalFly

move()

Animal

+getNLegs()

-myMovement

AnimalWalk AnimalCrawl

4

Commonalities and variabilities
• Commonality/variability analysis tells us how to find

variations in the problem domain and identify what is
common across the domain

• Commonality
– Coplien: ”Commonality analysis is the search for common

elements that helps us to understand how family members are
the same.” – Multi-Paradigm Design for C++

– thus process of finding how things are common defines a family
in which these elements belong and a context where things vary

– seeks the structure that is unlikely to change over time
• Variability

– Variability analysis reveals how things vary within a context of
commonality

• variability only makes sense within a given commonality
– captures structure that is likely to change

• From an architectural perspective, commonality analysis
gives the architecture its longevity; variability analysis
drives its fitness for use and flexibility

Commonalities and variabilities –
a paradigm for finding objects?

• This suggests that you should do the OO analysis from
commonality/variability viewpoint, instead of is-a based
analysis, looking at nouns and verbs

Commonality
analysis

Variability
analysis

Conceptual
perspective

Specification
perspective

Implementation
perspective

AbstractClass

ConcreteClass

+operations()

+operations()
ConcreteClass

+operations()

5

Summary

Given this particular implementation
(this variation), how can I implement it
with the given specification?

Derived classes

What interface is needed to handle all of
the responsibilities of this class?

An abstract class

You must ask yourself...When defining....

The interface for these classes
corresponds to the specification level

Specification interface for abstract
class

The variations identified within a
commonality become derivations of the
abstract class

Variations derivation of an abstract
class

The commonalities define the abstract
classes I need to use

Commonality which abstract classes
to use

An abstract class represents the core
concept that binds together all of the
derivatives of the class.

Abstract class the central binding
concept

CommentsMapping with Abstract Classes

The Bridge Pattern

6

Motivating Example
• The task is to write a program that will draw rectangles with either of

the two drawing programs, DP1 or DP2. When instantiating a
rectangle it is known which drawing program to use.

• Rectangles are presented as two pairs of points. The differences are
presented in the following table.

drawcircle(x,y,r)draw_a_circle(x,y,r)to draw a circle

drawline(x1,x2,y1,y2)draw_a_line(x1,y1,x2,y2)to draw a line

DP2DP1

• The client needs to be unaware of the type of the drawing program

• First idea for design: since the type of drawing program is told at the
time of instantiating rectangles, we could have two types of
rectangles, one that uses DP1 and other that uses DP2

Motivating Example

• A straightforward design using inheritance, solves the
problem

• … but requirements change (no surprise !!)
– Also Circles must be supported

Rectangle

V1Rectancle

+draw()
#drawLine()

Client

V2Rectangle

#drawLine() #drawLine()

DP1 DP2

+draw_a_line() +drawline()

7

Motivating Example
• The design can be easily extended…

– But the solution suffers (among other problems) from combinatorial
explosion of classes

Rectangle

V1Rectancle

+draw()
#drawLine()

Client

V2Rectangle

#drawLine() #drawLine()

DP1 DP2

+draw_a_line()
+draw_a_circle()

+drawline()
+drawcircle

Circle

V1Circle

+draw()
#drawCircle()

V2Circle

#drawCircle() #drawCircle()

Shape

+draw()

The Motivating Example
• Symptoms

– there is redundancy
– there is low cohesion
– things are tightly coupled
– would you want to maintain the code?

• But what is the underlying problem with the previous
solution?

• The abstraction (kinds of shapes) and the
implementation (drawing programs) are tightly coupled
– each type of shape must know what type of drawing program it is

using
– two variabilities inside different commonalities are coupled via

inheritance
• What we need is a way to separate variation in

abstraction from variations in implementation so that the
number of classes only grow linearly
this is what Bridge pattern does

8

The Motivating Example
• Let’s apply commonality/variability thinking:
• The common concepts, commonalities, that will become abstract classes

– Shapes, drawing programs

Shape
+draw()

Drawing
+drawLine()
+drawCircle

• at this point, shape only encapsulates the concept of shape that is
responsible for knowing how to draw themselves

• Drawing programs in turn are responsible for drawing lines and
circles

• Next step is to look for variability within each commonality
– for Shape, there are rectangles and circles
– for drawing programs, there are V1Drawing(based on DP1) and

V2Drawing (based on DP2)
• at this point we use concepts, not the concrete drawing programs

The Motivating Example
• By representing the variability with derived classes we get ...

• Remember: favor composition over inheritance
• Encapsulate behavior (implementation) with composition
• ... so we must only decide which uses the other

Shape
+draw()

Drawing
+drawLine()
+drawCircle()

+draw() +draw()

Rectangle Circle
+drawline()
+drawcircle()

V1Drawing V2Drawing
+drawline()
+drawcircle

9

The Motivating Example
• Now we have separated Shape abstraction from Drawing implementation in

a way that the two can vary independently
– (the two protected methods in Shape are to obey the ”Once and only once” –

rule)
• note that there is an adapter integrated with the bridge. It is not part of the

bridge pattern.

Shape

+draw()
#drawLine()
#drawCircle()

Drawing
+drawLine()
+drawCircle()

+draw() +draw()

Rectangle Circle
+drawLine()
+drawCircle()

V1Drawing V2Drawing
+drawLine()
+drawCircle()

DP1 DP2
+draw_a_line()
+draw_a_circle()

+drawline()
+drawcircle

Basic Aspects of Bridge Pattern

• Intent
– decouple an abstraction from its implementation
– allow implementation to vary independently from its

abstraction
– abstraction defines and implements the interface

• all operations in abstraction call methods from its implementation
object

• In the Bridge pattern ...
– ... an abstraction can use different implementations
– ... an implementation can be used in different

abstractions

10

Applicability

• Avoid permanent binding between an abstraction and
its implementation

• Abstractions and their implementations should be
independently extensible by subclassing

• Hide the implementation of an abstraction completely
from clients
– their code should not have to be recompiled when

implementation changes

• Share an implementation among multiple objects
– and this fact should be hidden from the client

Structure

11

Participants

• Abstraction
– defines the abstraction's interface
– maintains a reference to an object of type Implementor

• Implementor
– defines the interface for implementation classes

• does not necessarily correspond to the Abstraction's interface
• Implementor contains primitive operations,
• Abstraction defines the higher-level operations based on these

primitives

• RefinedAbstraction
– extends the interface defines by Abstraction

• ConcreteImplementer
– implements the Implementor interface, defining a concrete impl.

Consequences

• Decoupling interface and implementation
– implementation configurable and changeable at run-time
– reduce compile-time dependencies

• implementation changes do not require Abstraction to recompile

• Improved extensibility
– extend by subclassing independently Abstractions and

Implementations

• Hiding implementation details from clients
– shield clients from implementations details

• e.g. sharing implementor objects together with reference counting

12

Implementation

• Only one Implementor
– not necessary to create an abstract implementor class
– degenerate, but useful due to decoupling

• Which Implementor should I use ?
– Variant 1: let Abstraction know all concrete implementors and

choose
– Variant 2: choose initially default implementor and change later
– Variant 3: use an Abstract Factory

• no coupling between Abstraction and concrete implementor classes

A few notes

• Adapter makes things work after they're designed; Bridge makes
them work before they are. [GOF, p219]

• Bridge is designed up-front to let the abstraction and the
implementation vary independently. Adapter is retrofitted to make
unrelated classes work together. [GOF, 216]

• State, Strategy, Bridge (and to some degree Adapter) have similar
solution structures. They all share elements of the "handle/body"
idiom [Coplien, Advanced C++, p58]. They differ in intent - that is,
they solve different problems.

• The Bridge is not perfect: you may get a new shape that cannot be
implemented with the implementations already in place, e.g. an
ellipse. This requires changes to implementation, however these
changes are fairly well localized

• The Bottom Line: Patterns do not give perfect solutions. However,
chances are good that they provide better solutions that you or I
might come up with on our own.

