
1

1

• The concept of a design pattern
• Origins: architecture

• Description of design patterns

• Examples: Composite, Abstract Factory, State

• Design patterns & frameworks

• Antipatterns

• Design patterns & UML

• Summary

Design patternsDesign patterns

2

Cristopher Alexander et al.: A Pattern Language, 1977
Cristopher Alexander: The Timeless Way of Building, 1979

• World consists of repeating instances of various patterns
• A pattern is (possibly hidden) design know- how that should

be made explicit
• Well known in other engineering areas
• Particularly useful concept in software engineering

The concept of a design patternThe concept of a design pattern

2

3

4

Origins of ideas in (buildings) architectureOrigins of ideas in (buildings) architecture

• Christoffer Alexander: ”Is quality objective”?
• Some buildings possess ”a quality without a name”

– an objective quality, not measured but something you recognize
when you see it

– something to do with alive, whole, comfortable, exact, eternal
– Alexanders Claim: modern archtiecture lacks this quality

• Idea: user- centered design
– let the inhabitants design their own buildings, together with a

professional (participatory design), in terms of patterns
– capture the quality in a pattern lanquage, which is used to

generate the design

3

5

6

Origins of ideas in architectureOrigins of ideas in architecture
• Alexander studied the problem of objective quality by making

observations of buildings, towns, streets, gardens, any spaces that
human beings have built
– he discovered that high quality constructs had things in common
– architectural structures differed from each others, even it they were of the

same type solving the same problem. Yet different solutions were of high
quality.

– Alexander understood that structures could not be separated from the
problem they are solving

• ...so he looked at different sturctures yielding a high quality solution to
same problem and extracted the similarity of the structures, the core of
the solution, which he calls a pattern.

• Alexanders patterns
– solutions to a problem in a context
– 253 patterns covering regions, towns, transportations, homes offices,

rooms, lighthing, gardens, ...
– a generative pattern language

• each pattern defines subproblems solved by other smaller patterns

4

7

Alexanders patternAlexanders pattern

Each pattern describes a problem
which occurs over and over again in our environment,

and then describes
the core of the solution to that problem,

in such a way that
you can use this solution a million times over,

without ever doing it the same way twice

C. Alexander, “The Timeless Way of Building”, 1979

8

Alexander's View of a PatternAlexander's View of a Pattern

• A pattern is a three part rule that expresses a relation between a
certain context, a problem and a solution.

• A pattern is …
• Element of the world – a relationship between

– a context
– a system of forces that occur repeatedly in the context
– a spatial configuration which allow forces to resolve themselves

• Element of language – an instruction
– describes how the spatial configuration can be repeatedly used
– to resolve the given system of forces
– wherever the context makes it relevant

• The “thing – process” dualism, a pattern is both a thing and a process
– a thing that happens in the world
– a process (rule) which will generate that thing

5

9

10

From architectural to software design patternsFrom architectural to software design patterns

• Gamma (in GoF- book): “[Patterns] are descriptions of
communicating objects and classes that are customized to
solve a general design problem in a particular context.”

• “A design pattern names, abstracts, and identifies the key
aspects of a common design structure that make it useful
for creating a reusable object- oriented design.”

• So in short:
– Reusable solutions to general design problems
– Patterns capture well-proven experience in software development

• Similar to handbooks in other disciplines
– The pattern is applied to new situations
– Basic steps are always the same, but the exact way of applying a

pattern is always different.

6

11

Software Design PatternsSoftware Design Patterns

• Design patterns represent solutions to problems that arise
when developing software within a particular context
– Patterns = Problem/Solution pair in Context

• Capture static and dynamic structure and collaboration
among key participants in software designs
– key participant – an abstraction that occurs in a design problem
– useful for articulating the how and why to solve non-functional

forces.
• Facilitate reuse of successful software architectures and

design
– i.e. the “design of masters”…

12

General solution...
not specific to language, environment etc.
described as a semiformal document

...frequently occurring...
must be a common problem

...architecture/design problem...
applied at architecture or detailed design level

...in a context.
the problem appears in a context that defines certain
requirements or forces

Definition of SW design patternDefinition of SW design pattern

A general solution to a frequently occurring
architecture/design problem in a context.

7

13

Why Design Patterns?Why Design Patterns?
• make hidden design knowledge explicit and available
• can be used to document systems (instances of design

patterns)
• name and make explicit a higher- level structure which is

not directly supported by a programming language
• can be used as architectural building blocks
• give a common vocabulary for designers
• patterns are particularly useful for articulating how and

why to resolve non- functional forces – the design
rationale

• to sum up patterns...
1) Reuse solutions - learn from other good designs, not your own

mistakes
2) Estabish common terminology – communication and teamwork
3) Give a higher-level perspective on the problem and on the

porcess of design and object orientation

14

HigherHigher--level perspective level perspective –– the greatest the greatest
benefit?benefit?

• A conversation between two carpenters about how to
build the drawers for some cabinet:
”I think we should make the joints of the drawer by cutting
straight down into the wood, then cut back 45 degrees,
and then going straight down again, then back up 45
degrees, then again down...”

• What is he saying?
”I think we should make a dovetail joint”

• Compare to a software engineer in a code review
”And then, I use a while loop here to do ... followed by a
series of if statements to do ... and then I call the method
... and handle its return value with a switch statement ...”

• What is he saying?
– No idea!

8

15

HigherHigher--level perspective level perspective –– the greatest the greatest
benefit?benefit?

• The second carpenter asks ”Should we use a dovetail joint or a miter joint?”
• What is he really asking?
• Should we use a solution that is

– laborous and expensive to make, requires a skilled carpenter
– remains solid in changes of temperature and humidity
– is independent of fastening system, does not require glue or nails
– is aesthetically pleasing
– can be sold with a better price

• or a solution that is ...
– simple and cheap to make
– weaker, does not hold together under heavy stress
– inconspicious, the single cut is not very noticeable
– must be sold on higher quantities due to cheaper price

The question was really about high-level non-functional properties of the
design, accompanied with the structural solution

16

Documenting a patternDocumenting a pattern

• Gamma et al. used a standard procedure to describe and
document design patterns. The use of a standard
procedure increases understandability.

• Most books have adopted the same approach. By
documenting the design pattern, knowledge becomes
explicit, instead of in the designer’s head.

• Patterns are being collected to pattern cataloques
• It is essential that a design pattern is presented in a

systematic form as a semi- formal document.

• There are however several different forms for describing
design patterns, the following are needed in any
description.

9

17

Description of a design patternDescription of a design pattern

Essential parts:

NameName Increases design vocabulary

IntentIntent The purpose of the pattern

ProblemProblem Description of the problem and its context,
presumptions, example

SolutionSolution How the pattern provides a solution to the problem in
the context in which it shows up

ParticipantsParticipants The entities involved in the pattern

ConsequencesConsequences Benefits and drawbacks of applying the design pattern.
Investigates the forces at play in the pattern

ImplementationImplementation Different choices in the implementation of the design pattern,
possibly language-dependent

18

Description of GoF patternsDescription of GoF patterns
• Pattern Name and Classification: Convey the essence of

the pattern.
• Intent: What does the pattern do? What is its rationale?

What design issue does it address?
• Also Known As: Other well-known names for the pattern
• Motivation: A scenario that illustrates a design problem

and how the class and object structures in the pattern
solve the problem. Included to help understand the
abstract pattern.

• Applicability: In which situations can the pattern be
applied? What are examples of poor designs that the
pattern can address? How to recognize these situations

10

19

Description of GoF patternsDescription of GoF patterns

• Structure: A graphical representation of the
classes in the pattern. E.g. use UML Class
Diagrams and optionally Sequence Diagrams.
Interaction diagrams to illustrate the sequence of
requests between objects at runtime.

• Participants: The classes and/or objects in the
design pattern and their responsibilities.

• Collaborations: How do the participants
collaborate to carry out their responsibilities.

• Consequences: How does the pattern support its
objectives? What are the trade-offs? What aspect
of the system structure can be varied
independently?

20

Description of GoF patternsDescription of GoF patterns

• Implementation: Pitfalls, hints and techniques to
use when implementing the pattern. Language
specific issues.

• Sample Code: Code fragments that illustrate how
you might implement the pattern.

• Known Uses: Examples of the pattern found in
real systems. At least two from different domains.

• Related Patterns: What patterns are closely
related to this one? What are important
differences? With which other patterns should this
one be used?

11

21

History of Software PatternsHistory of Software Patterns

• 1987 Ward Cunningham and Kent Beck: ”Using Pattern
Languages for Object Oriented Programming”
– 5 pattern language for Smalltalk GUIs
– future expectation: 100-150 patterns could cover OO

programming!
• 1990- 1993 OOPSLA workshops, ideas developed
• 1993 The Hillside Group
• 1994 Start of PLoP conferences (pattern reviews), GoF

book
• 1995 the first PLoP book
• 1996 A system of Patterns, Buchmann et. al.)

..... The snowball started rolling

22

A few notes about GoF patternsA few notes about GoF patterns

• There are different ”styles” of software patterns, the best
known are the GoF patterns
– 23 in the book, more in PLoP

• GoF patterns are
– not very problem-specific
– not in a pattern system
– small, rather low level patterns

• Empasis on flexibility and reuse through decoupling of
classes

• The underlying principles
1) program to an interface, not to an implementation
2) favor composition over class inheritance
3) find what varies and encapsulate it

12

23

Composite Leaf
children

forall()

For all children c:
c.operation()

operation()

…
if X is Composite then

X.forall()
else X.operation;
...

…
if X is Composite then

Op1(…, X, …)
else Op2(…, X, …);
...

Problem: handling structures consisting of parts

Symptoms:
- Composite and leafs always treated differently in code
- Difficult to extend (new kinds of leafs or composites,

unrestricted depth)

Example GoF pattern: CompositeExample GoF pattern: Composite

First solution: two-levels

*

24

Developing the composite pattern (1)Developing the composite pattern (1)

1) Unified treatment in client and unrestricted depth of parts:

Item

operation()

*

íf I have children then
for all children c: c.operation()

else doSomething();

Client:

item.operation()

children

13

25

Developing the composite pattern (2)Developing the composite pattern (2)

Item

operation()

*

Item1

operation()

Item2

operation()

2) New types of elements:

íf I have children then
for all children c: c.operation()

else doSomething2()

íf I have children then
for all children c: c.operation()

else doSomething1()

children

26

Developing the composite pattern (3)Developing the composite pattern (3)

Item

operation()

*

Item1

operation()

Composite

operation()

3) Separating the composite class:

for all children c: c.operation()doSomeThing

children

14

27

Component

CompositeLeaf

children

operation() operation()

operation()

Name: Composite

Intent: How to organize hierarchical object structures so that
the clients are not aware of the hierarchy?

Sturcture:

Composite design patternComposite design pattern

For all children c:
c.operation()

*

28

Applicable when:

• you want to represent part-whole hierarchies of objects
• you want clients to be able to ignore the difference between composite and

elementary objects

Consequences:

• Where ever a client handles a composite object it can handle an elementary
object and vice versa

• Client code becomes simpler – avoid writing switch structures to code
handling composites

• Facilitates the adding of new composite and elementary types
• May over generalize: does not support a structure that allows only certain kinds

of composition structures. You can not rely on the type system to enforce those
constrains, you have to use run-time checks instead.

Composite (cont.)Composite (cont.)

15

29

Composite (cont.)Composite (cont.)
Implementation concerns

• Both parent and child references needed
• define parent reference in the component class
• it is essential to maintain the invariant between child and
parent references. The easiest way to do this is

• Sharing components: can the same element belong to several
composites? How to deal with parent references?
• Common interface for composite and leaf classes, type security,
LSP and ISP?
• Where to declare the child management operations? (gives a
tradeoff as an answer, transparency vs. safety)
• Are the elements ordered?
• Who creates and destroys the elements?
• Which data structure is used for storing the elements?

30

Example of applying CompositeExample of applying Composite

Source

FolderFile

children

delete()
print()

delete()
print()
add(Source)

delete()
print()

For all children c:
c.delete();

Delete folder

*SourceManager

16

31

Benefits of Design PatternsBenefits of Design Patterns
• Inspiration

– patterns don't provide solutions, they inspire solutions
– Patterns explicitly capture expert knowledge and design tradeoffs and make this

expertise widely available
– ease the transition to object-oriented technology

• Patterns improve developer communication
– pattern names form a vocabulary

• Help document the architecture of a system
– enhance understanding

• Design patterns enable large-scale reuse of software architectures

32

Drawbacks of Design PatternsDrawbacks of Design Patterns

• Patterns do not lead to direct code reuse

• Some patterns are deceptively simple

• Teams may suffer from patterns overload or pattern abuse
– Patterns add complexity if applied where they should not

• Integrating patterns into a software development process is a human-
intensive activity

17

33

Design patterns are notDesign patterns are not

• parts of a system;
• not a piece of code
• usually can be implemented in many ways

• general remedy to improve your system;
• using wrong design pattern may seriously harm the system
• at the least, you may be adding needless complexity

• God-given;
• reject patterns, modify them to fit your needs

• without potential problems:
• design fragmentation: more classes, more complicated
dependencies
• overkilling problems
• excessive dynamic binding, potentional performance problem
• ”object schitzophrenia”, splitting objects
• implicitness, require careful documentation

34

SummarySummary

• Design patterns present in a systematic way proven, good design solutions

• Design patterns are framework building blocks

• Use a design pattern only after recognizing the problem

• Design patterns concern experience, not inventions

• Design patterns are about common sense - use them with common sense

18

35

Significance to software?Significance to software?

From ”Pattern oriented software architecture” by Buschmann et al.

”Patterns expose knowledge about software construction that
has been gained by many experts over many years. All work
on patterns should therefore focus on making this precious
resource widely available. Every software developer should
be able to use patterns effectively when building software
systems. When this is achieved, we will be able to celebrate
the human intelligence that patterns reflect, both in each
individual pattern and in all patterns in their entirety. ”

