
1

Mediator

GoF Behavioral Pattern
Responsibility pattern

A mediator is responsible for controlling and
coordinating the interactions of a group of

objects

Removing dependencies with mediators
Set of strongly interacting objects

Problems:
• interdependencies are unstructured

and difficult to understand
• distributed behavior between several

classes cannot be customized or
extended without a lot of work,
e.g. by subclassing all participating
objects

• participants cannot be used in other
contexts – no reusability

2

Mediator

Advantages:
• limits required subclassing to

extend: when extending,
subclass only the mediator.

• decouples objects, reuse
• simplifies communication

(many-to-one instead of
many-to-many)

• co-operation abstraction
encapsulated to an object,
promotes understandability.

Problem: centralized control
(mediator may become
monolithic)

Mediator intent and problem

• Intent
– Define an object that encapsulates how a set of

objects interact.
– Mediator promotes loose coupling by keeping objects

from referring to each other explicitly
– Lets you vary their interaction independently.

• Problem
– We want to design reusable and maintainable

components, but dependencies between the
potentially reusable pieces demonstrates the
"spaghetti code" phenomenon. You get …

• “All or nothing” –reuse.
• “Change one and fix the rest” -maintenance

3

Mediator design pattern

Mediator

inform

ConcreteMediator

inform

Colleague

request

ConcreteColleague1

request
specificRequest1

ConcreteColleague2

request
specificRequest2

*1

Participants

• Mediator
– Defines an interface for communicating with Colleague objects
– Typically mediator is informed of some event or situation

• ConcreteMediator
– Implements cooperative behavior by coordinating Colleague

objects
– Knows and maintains its colleagues

• Colleague classes
– Each Colleague class knows its Mediator object
– Each colleague communicates with its mediator whenever it

would have otherwise communicated with another colleague
– Offers services (requests) to mediator
– There may be requests that are common to all colleagues, as

well as specific ones.

4

Example – a dialog window

DialogCoordinator

MyDialogCoordinator

Widget

changed()

ListBox

getSelection()

EntryText

setText()

*1
showDialog()
createWidgets()
widgetChange(Widget)

createWidgets()
widgetChange(Widget)

Discussion

• Partitioning a system into many objects generally enhances
reusability, but proliferating interconnections between those objects
tend to reduce it again.

• The mediator object
– encapsulates all interconnections
– acts as the hub of communication
– is responsible for controlling and coordinating the interactions of its

clients
– promotes loose coupling by keeping objects from referring to each other

explicitly.
• The Mediator pattern promotes a "many-to-many relationship

network" to "full object status". Modeling the inter-relationships with
an object
– enhances encapsulation
– allows the behavior of inter-relationships to be modified or extended

through subclassing.

5

Mediator vs. Facade

• Facade (normally) does not add any functionality, Mediator does
• Subsystem components are not aware of Facade
• Mediator's colleagues are aware of Mediator and interact with it

• Both Mediator and Façade are abut imposing policy.
– Façade is used to impose policy ‘from above’, the policy is clearly

visible.
• Everyone agrees to use the façade instead of the objects beneath it.
• The use of façade is visible and constraining

– Mediator imposes policy ‘from below’, the policy is hidden.
• The policy imposed is a fait accompli rather than a convention
• The use of Mediator is invisible and enabling

