Mediator

GoF Behavioral Pattern
Responsibility pattern

A mediator is responsible for controlling and
coordinating the interactions of a group of
objects

Removing dependencies with mediators

Set of strongly interacting objects

/ Problems:
* interdependencies are unstructured
and difficult to understand
« distributed behavior between several
classes cannot be customized or
/ extended without a lot of work,
e.g. by subclassing all participating

objects
* participants cannot be used in other
contexts — no reusability

Mediator

Advantages:

* limits required subclassing to
extend: when extending,
subclass only the mediator.

« decouples objects, reuse

* simplifies communication
(many-to-one instead of
many-to-many)

* co-operation abstraction
encapsulated to an object,
promotes understandability.

Problem: centralized control
(mediator may become
monolithic)

Mediator intent and problem

* Intent

— Define an object that encapsulates how a set of
objects interact.

— Mediator promotes loose coupling by keeping objects
from referring to each other explicitly

— Lets you vary their interaction independently.
* Problem
— We want to design reusable and maintainable
components, but dependencies between the
potentially reusable pieces demonstrates the
"spaghetti code" phenomenon. You get ...
» “All or nothing” —reuse.
» “Change one and fix the rest” -maintenance

Mediator design pattern

Mediator |1 «| Colleague
inform request
ConcreteMediato ConcreteCoIIeaguell ConcreteColleague?
inform request request
specificRequest1 specificRequest2
Participants
» Mediator

— Defines an interface for communicating with Colleague objects
— Typically mediator is informed of some event or situation

+ ConcreteMediator
— Implements cooperative behavior by coordinating Colleague
objects
— Knows and maintains its colleagues

» Colleague classes
— Each Colleague class knows its Mediator object

— Each colleague communicates with its mediator whenever it
would have otherwise communicated with another colleague

— Offers services (requests) to mediator

— There may be requests that are common to all colleagues, as
well as specific ones.

Example — a dialog window

DialogCoordinatorI
1 *| Widget

showDialog()
createWidgets()
widgetChange(Widget) changed()

1 T 1

ListBox EntryText

MyDialogCoordinato

=

createWidgets()
widgetChange(Widget) getSelection() setText()

1 T

Discussion

Partitioning a system into many objects generally enhances
reusability, but proliferating interconnections between those objects
tend to reduce it again.
The mediator object
— encapsulates all interconnections
— acts as the hub of communication
- isi_re?ponsible for controlling and coordinating the interactions of its
clients
— promotes loose coupling by keeping objects from referring to each other
explicitly.
The Mediator pattern promotes a "many-to-many relationship
network" to "full object status". Modeling the inter-relationships with
an object
— enhances encapsulation
— allows the behavior of inter-relationships to be modified or extended
through subclassing.

Mediator vs. Facade

Facade (normally) does not add any functionality, Mediator does
Subsystem components are not aware of Facade
Mediator's colleagues are aware of Mediator and interact with it

Both Mediator and Fagade are abut imposing policy.
- F_ac_;:ba}de is used to impose policy ‘from above’, the policy is clearly
visible.

» Everyone agrees to use the fagade instead of the objects beneath it.
* The use of fagade is visible and constraining

— Mediator imposes policy ‘from below’, the policy is hidden.
* The policy imposed is a fait accompli rather than a convention
* The use of Mediator is invisible and enabling

