
1

Observer

GoF Behavioral Pattern
Responsibility pattern

Background for Observer
From services to events

service caller

service
provider

event
event handlers

event source

• service callers arrival in some place of its code can bee seen as a
global event, related modules can react in various ways
• neither the event producer, nor handler need to know each other, get
rid of direct dependency

2

Dimensions of event-based systems

• synchronous or asynchronous control flow?
• causing and handling an event in same (synchronous) or
different processes?
• where are the observers registered, locally or globally?
• who determines the time of handling the event, source or
observer?
• does an event carry additional information?

Example: synchronous event-handling, source
notified system with source-registered observers

Event source

register

notify event

Observers

3

Example: synchronous event-handling, source
notified system with source-registered observers

Intent and problem

• Intent
– Define a one-to-many dependency between

objects so that when one object changes
state, all its dependents are notified and
updated automatically.

• Problem
– A large monolithic design does not scale well

as new dependent objects are added.
– The reusability of classes is lost in a

dependent design.

4

Observer design pattern

Subject

reg(x: Observer)
unreg(x: Observer)
notify()

ConcrSubject

<<interface>>
Observer

update() {abstract}

ConcrObserver

update()

observes

for all t in observes {
t.update();

}

registers

*

getState()
setState()

Collaboration

5

Applicability

• Use the Observer pattern:
– When an abstraction has two aspects, one dependent on the

other. You need to encapsulate these aspects into separate
objects for e.g. to achieve reusability.

– When a change to one object requires changing others, and you
don't how many objects need to be changed

– When an object should be able to notify other objects without
making assumptions about who these objects are.

– The control model is of type synchronous event-handling, source
notified system with source-registered observers

• Observer is a widely used pattern, once you understand
it, you see uses for it everywhere
– You can register observers with all kinds of objects rather than

writing those objects to explicitly call you.
• It is easy to use adapter to make an object fit the

Observer interface

Discussion

• How it works
– Define an object that is the "keeper" of the data model and/or business

logic (the Subject).
– Delegate all "view" functionality to decoupled and distinct Observer

objects.
– Observers register themselves with the Subject as they are created.
– Whenever the Subject changes, it broadcasts to all registered

Observers that it has changed, and each Observer queries the Subject
for that subset of the Subject's state that it is responsible for monitoring.

– This allows the number and "type" of "view" objects to be configured
dynamically, instead of being statically specified at compile-time.

• There are two primary of Observer pattern, pull model and push
model.
– the protocol described above specifies a pull interaction model. Instead

of the Subject pushing what has changed to all Observers, each
Observer is responsible for pulling its particular window of interest from
the Subject.

– The push model compromises reuse, while the pull model is less
efficient.

6

Example: Observer – the same class acts both as
an observer and subject

Person

Interested
<<interface>>

anniversaryHandler(BirthdayEvent)

*

addInterested(Interested)
removeInterested(Interested)
getold() // ‘notify’ metodi
anniversaryHandler(BirthdayEvent)

BirthdayEvent

creates

handles

notifies

registers

setHero(Person)
getHero(): Person

Remeber this?
Adapter design pattern

ClientClient
Target

request

specificRequest

Adapter adaptee Adaptee

requestadaptee.specificRequest

7

Example: Observer and Adapter

Person

Interested
<<interface>>

anniversaryHandler(BirthdayEvent)

*

addInterested(Interested)
removeInterested(Interested)
getold()
anniversaryHandler(BirthdayEvent)

BirthdayEvent

creates

handles

notifies

registers

CompanyAdapter

anniversaryHandler(BirthdayEvent)

Company

publishAnnouncement(Str)

adaptee

adaptee->publishAnnouncement(
"Congratulations.... ");

setHero(Person)
getHero(): Person

company class is used by many clients, can not be changed e.g. by making it implement ”intrested”

Observer and OO design principles
• The main driving principle behind observer is OCP – the

design is open for extending by adding new observers so
that you do not have to change the observed object
(Subject). Thus the observed object stays closed.

• In the birthday example, a Person is substitutable for
interface Interested. The abstract class Subject is
combined with the ConcreteSubject in class Person.
Thus it is clear that Person is substitutable for Subject,
satisfying LSP.

• DIP?
– Observer is an abstract class, ConcreteObserver depends on it,

OK.
– Subject has only concrete methods and still ConcreteSubject

depends on it. This does not violate DIP because Subject is not
meant to be ever instantiated. Thus, Subject is logically abstract.

