
1

Designing with patterns -
Refactoring

“Bottom up” based application of patterns

“Improving the design after it has been written”

What is Refactoring?

• Two definitions, the object and act of change in software
– A change made to the internal structure of software to make it

easier to understand and cheaper to modify without changing its
observable behavior.

– To restructure software by applying a series of refactoringns

• A practical definition
– Systematically alter the source code of a program in order to

improve its design
• Goal of change is to make software easier to understand and

modify, not e.g. change it for better performance.
– All changes are correctness preserving
– Changes are done one step at a time
– Frequent regression testing is used to enable changes without

too much bug fixing.

2

Why to refactor?

• Refactoring is just one of the ‘good software
engineering practices’, no magical tool. It should
be used for several purposes.

• Refactoring improves the design of software
– The design of software will decay – as changes are

done the code (and design) loses its original
structure. The self-documenting property of the code
vanishes, the design is not any more readable in the
code.

– Refactoring does the opposite, it creates design in the
existing code.

– Regular refactoring adjusts the design piece by piece
to changing functionality

Why to refactor?

• Refactoring makes software easier to
understand
– The task of getting the software to do its required task

is often all the pain you can take, you really do not
want to think about the future developers or
maintainers pain.

– You should, code is written once but read many
times.

– Refactoring lets you concentrate on getting the
functionality in place, and then afterwards concentrate
on easing the life of future developer.

– The code should communicate your design ideas.

3

Why to refactor?

• Refactoring helps you find bugs
– When refactoring, you deeply understand what the code does,

clarify the purpose of code to a point where you simply can not
avoid seeing the bugs.

• Refactoring helps you program faster
– Without refactoring you start faster but loose speed after a while.
– Good quality, good and up to date design, readability, self-

documenting code, rapidly found bugs … all this is necessary to
maintain speed in software development.

• All of the above is achieved by removing duplicate code,
localizing code. Thus this is a general goal of refactoring.

• The final reason: because you will finish the project
earlier.

When to refactor?

• Simple answer: all the time
– Refactoring should not be a phase that is executed e.g. every two

weeks, but an integral part of design/programming.
• More specifically, think refactoring when …
• Rule of three

– first time you do something, just do it. Second time you do something
similar, you may do it with duplication. Third time something similar,
refactor.

• Refactor when you add functionality
– Refactor the code that is going to change before you make the change

in order to deeply understand the code
– If the change does not fit in easily, refactor the design to enable smooth

addition of the new feature
• Refactor when you need to fix a bug

– The fact that there was a bug states that the code is not easy to
understand, otherwise the bug would not have born

• Refactor in a code review
– If you are going to go through the code, why not go through the design

as well, and to deeply understand the code

4

Code smells – when to apply a refactoring

• It is easy to say how to improve a certain local design, but far more
difficult to say when the design is poor enough that you should
improve it.

• Code smells are symptoms, something that should raise your
attention to ponder the need for refactoring.

• Duplicate code – number one smell
– example: you have similar code in two sibling subclasses. Use Extract

Method to separate similar parts from different bits, then you can use
Pull Up Field, or may find Form Template Method suitable, or maybe
Substitute Algorithm is what you need.

– example: you have duplicate code in unrelated classes. Consider using
Extract Class in one class and then use the new component in the
other. Other possibility is that the code really belongs only to one class
and should be invoked by other, or that it should be in a third class and
referred to by both original classes.

– The cure is up to you, you have to analyze the situation and decide
where to put the code.

Code smells – when to apply a refactoring

• Long method
– Extract Method, Replace Method with Method Object, Introduce

Parameter Object...
• Large class

– Extract Class, Extract Subclass, Extract Interface
• Divergent change (same parts change for many reasons)

– This is typically a violation of SRP or a non-cohesive class
– Extract Class

• Shotgun surgery (changes are not local)
– Move method, Move Field, Inline Class…

• Feature envy (a class is too interested on another classes features)
– Move Method, Extract Method
– Strategy, Visitor
– Fundamental rule: put things together that change together

• … and many, many more…

5

Testing

• Refactoring is impossible without
automatic, comprehensive tests.

• Writing test must be integrated to writing
code.

• Before refactoring, write tests to show if
you did the job correctly

• Before fixing a bug, write tests.

• JUnit is one suitable testing framework for
this purpose.

Refactoring to patterns

• Patterns define higher-level goals to refactorings
– A pattern solution to a code smell can not be

achieved with just one or two low level refactorings
but a sequence of them

• Patterns define direction of refactorings
– Refactor towards a pattern, not necessary to refactor

all the way to the pattern solution
• Patterns help you to understand the forces

behind code smells
• Patterns help you see the design that mitigates

the forces

