
1

State

GoF object behavioral
Operation pattern

State
• Intent

– Allow an object to alter its behavior when its internal 
state changes. The object will appear to change its 
class. 

– Typically to implement behavior changing according 
to a state transition diagram

• Applicability
– A big monolithic object's behavior is a function of its 

state, and it must change its behavior at run-time 
depending on that state. 

– Or, an application is characterized by large and 
numerous case statements that implement flow of 
control based on the state of the application. Often 
the control code is duplicated in many methods. State 
pattern will move each branch of the conditional logic 
in a separate class.



2

State
• How it works

– The State pattern is a solution to the problem of how 
to make behavior depend on state. 

– Define a "context" class to present a single interface 
to the outside world. 

– Define a State abstract base class. 
– Represent the different "states" of the state machine 

as derived classes of the State base class. 
– Define state-specific behavior in the appropriate State 

derived classes. 
– Maintain a pointer to the current "state" in the 

"context" class. 
– To change the state of the state machine, change the 

current "state" pointer. 

State - Structure



3

State - Consequencies
• Localize state-specific behavior and partitions for different states

– The state pattern puts all behavior associated with a state into one 
object. 

– New states can be added easily by defining new subclasses. Compare 
this with the alternative of changing the conditional logic of all methods 
in a single class.

– As the number of states grow, the number of classes may become 
large. This is however good design, the alternative would be 
unmanageable.  

• It makes state transitions explicit, localize state transition code if 
implemented in the context 
– The alternative would be to define the state in terms of internal data 

values. When the state changes would not be seen easily in the code, 
but scattered in the complicated conditional logic.

• State objects can be shared if they do not require instance variables
– In this case state objects are essentially an instance of the Flyweight 

pattern. 

State - discussion
• The State pattern does not specify where the state transitions will be 

defined. The choices are two
1) In the "context" object (applicable if the criteria for state transitions 

are fixed)
2) In each individual State derived class 
– The advantage of the latter option is ease of adding new State 

derived classes. The disadvantage is each State derived class has 
knowledge of (coupling to) its siblings, which introduces 
dependencies between subclasses. [GOF, p308] 

• Creating and Destroying State Objects – two options
– Create state object when needed 
– Create states once as singletons



4

State – related patterns
• State, Strategy, Bridge (and to some degree Adapter) have similar 

solution structures. They all share elements of the "handle/body" 
idiom [Coplien, Advanced C++, p58]. They differ in intent - that is, 
they solve different problems. 

• The implementation of the State pattern builds on the Strategy 
pattern. The difference between State and Strategy is in the intent.
– With Strategy, the choice of algorithm is fairly stable. 
– With State, a change in the state of the "context" object causes it to 

select from its "palette" of Strategy objects. [Coplien, Multi-Paradigm 
Design for C++, Addison-Wesley, 1999, p253] 

• The structure of State and Bridge are identical (except that Bridge 
admits hierarchies of envelope (context) classes, whereas State 
allows only one). The two patterns use the same structure to solve 
different problems: State allows an object's behavior to change 
along with its state, while Bridge's intent is to decouple an 
abstraction from its implementation so that the two can vary 
independently. [Coplien, C++ Report, May 95, p58] 

State vs. strategy in practise –
differencies in ...

• Change of operation implementation at runtime
• Strategy

– Context object usually contains one of several possible ConcreteStrategy objects
– Once created the ConcreteStrategy seldom changes at runtime. Different 

strategies are used in different context objects. 
• State

– Context object changes its ConcreteState object over its lifetime as the 
corresponding finite state machine ‘tics’. 

• What the client sees 
• Strategy

– All ConcreteStrategies do the same thing, but differently 
– Clients of Context do not see any difference in behavior in the Context 

• State
– ConcreteStates act differently 
– Clients see different behavior in the Context

• In other words, Strategy uses polymorphism to allow different 
implementations for an operation, whereas State uses polymorphism to 
allow different operations depending on the state. 


