Colrse Syllapbus

Designing ObjeciFr@rienicad ® Credits: 5 cp (3 cu)

® Prerequisites:
Softwae OOhjelmointi II [Programming 1I]
Oobject-oriented programming
/ ® Teaching methods: lectures
Jouni Smed OTuesdays 10-12, Etaluokka
10]0]6) Ofrom March 7 to April 25
® Assessment: examination only

® Course web page:
http://staffi.cs. utu.fi/staff/jouni.smed/doos/

Ex@minotions Texieeok for the Couise

® Tentative examination dates ® Martin, Robert C.: Agile
Software Development:

OMay, 2006 Principles, Patterns, and
OJune, 2 Practices, Prentice-Hall
une, 2006 S ,

OSeptember, 2006 ISBN: 0-13-597444-5
® Check the exact times and places at ® This course will rely

http://www.it.utu.fi/opetus/tentit/ R S b e

® If you are not a student of University of book is necessary!

: A You can use the textbook
'Crrl_.ler'é(ililé you must register to receive the in the examination

® Remember to enrol in time! ‘

Progr@mming in the 4940s and

Ouiline of the Course 19505

® Programming = instructing the machine

ection 1 |Planning, testing, refactorin ©maiingosiznted programming
E g E ® Far from the way programmers (humans) think
octi

® The IE])roblemlcélomain remained close to the
N macnine wor
E O making calculations, sorting data etc.
. . O enable the programmer to write the software
O focus on the design of algorithms and data structures.
7. ® Implementing the design was difficult @




Progr@mnming in the 4960s and Progr@mnming in the 4960s and
1 97485 | 97485} (cont'd)

® ‘High-level” programming languages ® Programming comprised
O Algol, Fortran, Pascal, Ada, C, ... O creating and manipulating complex data structures and
O problem-oriented programming algorithms

® Innovations ©) reali;ing s_ubroutines : o
O reducing machine dependency: portability O dealing with the physical organization of the software

© managing complex and large problems: structured ® The problem domain took a big leap towards the
programming, modular programming and information real world

hiding O commercial information systems, traffic, science...
® Main goals of design ® This was the era of waterfall way of building

O enable an automatic transformation of an analysis model systems, which led to the so-called software
to a program structure

O managing the work of many simultaneous programmers

) I

crisis

O keeping the system maintainable

Pro@i@mming in the dl980s and .
19905 Pregi@mming Now/

® Rise of the object-oriented (OO) paradigm ® The new software crisis: the bloat of design work
O real-world concepts are directly supported with programming O expensive
language constructs (e.g. classes) O opposes maintainability and adaptability

Detailed design Iterative way of building large systems changes the role of
how to implement an analysis model with OO mechanisms? design

O class-level reuse, specifying the programming task for a O the design is created piece by piece as the understanding of
programmer, understandability and maintainability of the the problem grows
SUrEg code 5 Programming and detailed design are unifying
A[’chltecture design ) . O high-level constructs allow to express the design in the code
C hovz to create, describe and manage the big picture of a O design patterns allow even to express the architecture design
;'Yasinetg}nability of the system, manageability during design i irells o Biie [progrimimenr i3 rising
~ (multiple team development), handling non-functional operates at the design level ) .
properties of the system, high-level reuse, adaptability of the O understands the profound object-oriented principles

system...

Programming was still seen as realizing the design

ThregiRerspectives opiseftware

L -, N Tradiiienal Enginesling. . |

® The design is expressed in the blueprints
® Conceptual

> represents the concepts in the ® Engineers try to make absolutely sure that
problem-domain Othe design is correct
O objects defined in the terms of P . g
responsibilities besi Orequirements are met
i . esign ~ - . -
e Specification J Othe product will function as specified
O focuses on the software at the level of Y Wh 2
interfaces (not the implementation) by'.ld' o duct i .
O how the modules are connected ullding the product Is expensive
® Implementation ) Oconstruction cann ndon riti
O looks inside the modules, the code Programming D onsiryctivn connut be Licone (or s

: expensive to do so)
O probably the most often used . . .
perspective (should not be) ® Construction is done by different people
O object lating dat i i
ghiectearc ceenlas cncepetlating dara — The blueprints must contain all

information needed for construction




...@n@iSoffware Engineering

® Source code is the blueprints

® Compiler does the actual
construction work

® Since construction is virtually
costless it can be redone over and
over again!

Otraditional engineering # software
engineering

Pre@r@mming vs. BEesian?

® Complexity and volatile requirements
— iterative approach with feedback
® Construction is cheap
O no need to speculate by building models, prototypes, simulations
® |teration can cover analysis-design-implementation-
testing phases
— the act of design in software engineering
® Programming is
O constructing the software (i.e. programming)
O designing the software
® Not designing the program but programming the design

PlaRRing

® Initial exploration
O developers and customers identify all significant user stories
O estimate the cost of the stories
® splitting and merging
® velocity « cost and priority of a story
® Release planning
O a crude selection of stories to be implemented in the first
release
® business decisions
O developers and customers agree on a date for the first release
® typically 2-4 months in the future
® Iteration planning
O developers and customers agree on the iteration length
® typically 2 weeks

Whaithiakes Softwaretsy
Complicated?

® The problem being solved
O finding and understanding the requirements
® The software itself
) managing and understanding the software
O finding a solution that meet the requirements
® The software organization
O managing the employees working on the same system

® The software industry.
O constantly changing environments
O market situation
O platform technologies

Develepment

® Planning
® Testing
® Refactoring

[ter@iion

® Start:
O developers and customers get together
D customers choose stories to be implemented
® no more than velocity allows
® cannot be changed once the iteration has begun
O task planning: developers break the stories down to
development tasks (implementable in 4-16 h
® Halfway point:
O the team meats and assesses the progress so far
® End:

O iteration ends on the specified date (regardless whether the
stories are done)

O developers demonstrate the current running executable to the
customers for evaluation

O the velocity is updated




Tesiing

® Writing unit tests is an act of
O design
O documentation
O verification
® Test driven development: design tests before you
design the program
® Effects
O backstop for further development: add and change
without fear of breaking the existing software
O different point of view: write from the vantage point of a
caller of the program — interface and function of a
program
O forces to decouple the software

O documentation: how to call a function? check the test! I

Reji@eionng

® Practical definition: altering the
source code systematically to
improve its design
Oeasier to understand
Ocheaper to modify.
Odoes not change its observable behavior

Othe goal is not better performance
@

WRERN® Refactor?

® Rule of three
O first time: just do it
O second time: you may duplicate
O third time: refactor
Refactor when you add functionality

O refactor the code that is goin to change before you make the
change to understand it deeply

O if the change does not fit in easily, refactor the design to
enable smooth addition of the new feature

Refactor when you need to fix a bug
O a bug indicates that the code is not easy to understand
Refactor in a code review

O if you are going through the code, why not go through the
design as well

Refactor all the time
O it is an integral part of designing and programming

Tesfin@ (conf'd)

® Unit tests

Owhite-box tests that verify individual
mechanisms

Odo not verify that the system works as a whole
Odocuments the internals of a system
® Acceptance tests

Oblack-box tests that verify that customer
requirements are being met

Owritten by people (customers, QA) who do not
know the internal mechanisms of the system

Odocuments the features of a system

Bengliis of Refactofing

® Improves the design of the software
Ocreates the design in the existing code
Oadjusts the design piece by piece to changing
functionality
® Helps in finding bugs
Oclarifies the purpose of the code to a point
where you simply cannot avoid seeing the
bugs
® Helps in programming faster

Owithout refactoring you start faster but lose
speed after a while

WR@IREoes WrongWiii Software?

® You start with a clear picture in your mind
® Then something goes wrong

Ochanges and additions are harder and harder
to make

Oyou are forced to let go of the original design
ideas

Oeventually even the simplest changes terrify:
you because of rippling unexpected effects,
and you must redesign the whole software.

® You started with good intentions, so what

went wrong? ﬂ




Seyenibeadly Sins (ofSymptoms @i
PoorDesign)

. Rigidity

. Fragility

. Immobility

. Viscosity

. Needless complexity

. Needless repetition

. Opacity

Re@a@ing forihe Nexigeek

® Section 2: Agile Design

OChapter 7: What Is Agile Design?

OChapter 8: The Single-Responsibility Principle
OChapter 9: The Open-Closed Principle
OChapter 10: The Liskov Substitution Principle
OChapter 11: The Depency-Inversion Principle
OChapter 12: The Interface-Segregation

Principle




