
1

Designing ObjectDesigning Object--Oriented Oriented 
SoftwareSoftware

Jouni SmedJouni Smed
20062006

Course SyllabusCourse Syllabus

Credits: 5 cp (3 cu)Credits: 5 cp (3 cu)
Prerequisites: Prerequisites: 

Ohjelmointi II [Programming II]Ohjelmointi II [Programming II]
objectobject--oriented programmingoriented programming

Teaching methods: lecturesTeaching methods: lectures
Tuesdays 10Tuesdays 10––12, Etäluokka12, Etäluokka
from March 7 to April 25from March 7 to April 25

Assessment: examination onlyAssessment: examination only
Course web page: Course web page: 
http://staff.cs.utu.fi/staff/jouni.smed/doos/http://staff.cs.utu.fi/staff/jouni.smed/doos/

ExaminationsExaminations

Tentative examination datesTentative examination dates
May, 2006May, 2006
June, 2006June, 2006
September, 2006September, 2006

Check the exact times and places at Check the exact times and places at 
http://www.it.utu.fi/opetus/tentit/http://www.it.utu.fi/opetus/tentit/
If you are not a student of University of If you are not a student of University of 
Turku, you must register to receive the Turku, you must register to receive the 
creditscredits
Remember to enrol in time!Remember to enrol in time!

Textbook for the CourseTextbook for the Course

Martin, Robert C.: Martin, Robert C.: Agile Agile 
Software Development: Software Development: 
Principles, Patterns, and Principles, Patterns, and 
PracticesPractices, Prentice, Prentice--Hall, Hall, 
2003, 2003, 
ISBN: 0ISBN: 0--1313--597444597444--55
This course will rely This course will rely 
heavily on the textbook, heavily on the textbook, 
which is why obtaining the which is why obtaining the 
book is necessary!book is necessary!
You can use the textbook You can use the textbook 
in the examinationin the examination

Outline of the CourseOutline of the Course

Design patterns 3Design patterns 3Section 6Section 67.7.

Design patterns 2Design patterns 2Section 5Section 56.6.

Package designPackage designSection 4Section 45.5.

Design patterns 1Design patterns 1Section 3Section 34.4.

SRP, OCP, LSP, DIP, ISPSRP, OCP, LSP, DIP, ISPSection 2Section 23.3.

Planning, testing, refactoringPlanning, testing, refactoringSection 1Section 12.2.

————1.1.

TopicsBookLecture

Programming in the 1940s and Programming in the 1940s and 
1950s1950s

Programming = instructing the machine Programming = instructing the machine 
operationsoperations

machine language or assemblermachine language or assembler
machinemachine--oriented programmingoriented programming

Far from the way programmers (humans) thinkFar from the way programmers (humans) think
The problem domain remained close to the The problem domain remained close to the 
machine worldmachine world

making calculations, sorting data etc.making calculations, sorting data etc.

Main goals of design Main goals of design 
enable the programmer to write the softwareenable the programmer to write the software
focus on the design of algorithms and data structures.focus on the design of algorithms and data structures.

Implementing the design was difficultImplementing the design was difficult



2

Programming in the 1960s and Programming in the 1960s and 
1970s1970s

‘‘HighHigh--level’ programming languageslevel’ programming languages
Algol, Fortran, Pascal, Ada, C, …Algol, Fortran, Pascal, Ada, C, …
problemproblem--oriented programmingoriented programming

InnovationsInnovations
reducing machine dependency: portabilityreducing machine dependency: portability
managing complex and large problems: structured managing complex and large problems: structured 
programming, modular programming and information programming, modular programming and information 
hidinghiding

Main goals of designMain goals of design
enable an automatic transformation of an analysis model enable an automatic transformation of an analysis model 
to a program structureto a program structure
managing the work of many simultaneous programmers managing the work of many simultaneous programmers 
keeping the system maintainablekeeping the system maintainable

Programming in the 1960s and Programming in the 1960s and 
1970s (cont’d) 1970s (cont’d) 

Programming comprised Programming comprised 
creating and manipulating complex data structures and creating and manipulating complex data structures and 
algorithmsalgorithms
realizing subroutinesrealizing subroutines
dealing with the physical organization of the softwaredealing with the physical organization of the software

The problem domain took a big leap towards the The problem domain took a big leap towards the 
real world real world 

commercial information systems, traffic, science…commercial information systems, traffic, science…

This was the era of waterfall way of building This was the era of waterfall way of building 
systems, which led to the sosystems, which led to the so--called software called software 
crisiscrisis

Programming in the 1980s and Programming in the 1980s and 
1990s1990s

Rise of the objectRise of the object--oriented (OO) paradigmoriented (OO) paradigm
realreal--world concepts are directly supported with programming world concepts are directly supported with programming 
language constructs (e.g. classes)language constructs (e.g. classes)

Detailed design Detailed design 
how to implement an analysis model with OO mechanisms?how to implement an analysis model with OO mechanisms?
classclass--level reuse, specifying the programming task for a level reuse, specifying the programming task for a 
programmer, understandability and maintainability of the programmer, understandability and maintainability of the 
source codesource code

Architecture design Architecture design 
how to create, describe and manage the big picture of a how to create, describe and manage the big picture of a 
systemsystem
maintainability of the system, manageability during design maintainability of the system, manageability during design 
(multiple team development), handling non(multiple team development), handling non--functional functional 
properties of the system, highproperties of the system, high--level reuse, adaptability of the level reuse, adaptability of the 
system…system…

Programming was still seen as realizing the designProgramming was still seen as realizing the design

Programming Programming NowNow

The new software crisis: the bloat of design workThe new software crisis: the bloat of design work
expensive expensive 
opposes maintainability and adaptabilityopposes maintainability and adaptability

Iterative way of building large systems changes the role of Iterative way of building large systems changes the role of 
designdesign

the design is created piece by piece as the understanding of the design is created piece by piece as the understanding of 
the problem growsthe problem grows

Programming and detailed design are unifyingProgramming and detailed design are unifying
highhigh--level constructs allow to express the design in the codelevel constructs allow to express the design in the code
design patterns allow even to express the architecture designdesign patterns allow even to express the architecture design

The role of the programmer is risingThe role of the programmer is rising
operates at the design level operates at the design level 
understands the profound objectunderstands the profound object--oriented principlesoriented principles

Three Perspectives on Software Three Perspectives on Software 
DevelopmentDevelopment

ConceptualConceptual
represents the concepts in the represents the concepts in the 
problemproblem--domaindomain
objects defined in the terms of objects defined in the terms of 
responsibilitiesresponsibilities

SpecificationSpecification
focuses on the software at the level of focuses on the software at the level of 
interfaces (not the implementation) interfaces (not the implementation) 
how the modules are connectedhow the modules are connected

ImplementationImplementation
looks inside the modules, the codelooks inside the modules, the code
probably the most often used probably the most often used 
perspective (should not be)perspective (should not be)
objects are seen as encapsulating data objects are seen as encapsulating data 
and providing access to servicesand providing access to services

DesignDesign

ProgrammingProgramming

Traditional Engineering…Traditional Engineering…

The design is expressed in the blueprintsThe design is expressed in the blueprints
Engineers try to make absolutely sure that Engineers try to make absolutely sure that 

the design is correct the design is correct 
requirements are met requirements are met 
the product will function as specifiedthe product will function as specified

Why?Why?
building the product is expensivebuilding the product is expensive
construction cannot be undone (or it is construction cannot be undone (or it is 
expensive to do so)expensive to do so)

Construction is done by different people Construction is done by different people 
→→ The bThe blueprints must contain all lueprints must contain all 
information needed for constructioninformation needed for construction



3

……and Software Engineeringand Software Engineering

Source code is the blueprintsSource code is the blueprints
Compiler does the actual Compiler does the actual 
construction workconstruction work
Since construction is virtually Since construction is virtually 
costless it costless it can be redone over and can be redone over and 
over again!over again!

traditional engineering ≠ software traditional engineering ≠ software 
engineeringengineering

What Makes Software Systems What Makes Software Systems 
Complicated?Complicated?

The problem being solvedThe problem being solved
finding and understanding the requirementsfinding and understanding the requirements

The software itselfThe software itself
managing and understanding the softwaremanaging and understanding the software
finding a solution that meet the requirementsfinding a solution that meet the requirements

The software organizationThe software organization
managing the employees working on the same systemmanaging the employees working on the same system

The software industryThe software industry
constantly changing environmentsconstantly changing environments
market situationmarket situation
platform technologiesplatform technologies

Programming vs. Design?Programming vs. Design?

Complexity and volatile requirementsComplexity and volatile requirements
→→ iterative approach with feedbackiterative approach with feedback
Construction is cheapConstruction is cheap

no need to speculate by building models, prototypes, simulationsno need to speculate by building models, prototypes, simulations
Iteration can cover analysisIteration can cover analysis--designdesign--implementationimplementation--
testing phasestesting phases
→→ the act of design in software engineeringthe act of design in software engineering
Programming isProgramming is

constructing the software (i.e. programming)constructing the software (i.e. programming)
designing the softwaredesigning the software

Not designing the program but programming the designNot designing the program but programming the design

DevelopmentDevelopment

PlanningPlanning
TestingTesting
RefactoringRefactoring

PlanningPlanning

Initial explorationInitial exploration
developers and customers identify all developers and customers identify all significantsignificant user storiesuser stories
estimate the cost of the storiesestimate the cost of the stories

splitting and mergingsplitting and merging
velocity velocity ←← cost and priority of a storycost and priority of a story

Release planningRelease planning
a crude selection of stories to be implemented in the first a crude selection of stories to be implemented in the first 
releaserelease

business decisionsbusiness decisions
developers and customers agree on a date for the first releasedevelopers and customers agree on a date for the first release

typically 2typically 2––4 months in the future4 months in the future
Iteration planningIteration planning

developers and customers agree on the iteration lengthdevelopers and customers agree on the iteration length
typically 2 weekstypically 2 weeks

IterationIteration

Start: Start: 
developers and customers get together developers and customers get together 
customers choose stories to be implementedcustomers choose stories to be implemented

no more than velocity allowsno more than velocity allows
cannot be changed once the iteration has beguncannot be changed once the iteration has begun

task planning: developers break the stories down to task planning: developers break the stories down to 
development tasks (implementable in 4development tasks (implementable in 4––16 h)16 h)

Halfway point: Halfway point: 
the team meats and assesses the progress so farthe team meats and assesses the progress so far

End:End:
iteration ends on the specified date (regardless whether the iteration ends on the specified date (regardless whether the 
stories are done)stories are done)
developers demonstrate the current running executable to the developers demonstrate the current running executable to the 
customers for evaluationcustomers for evaluation
the velocity is updatedthe velocity is updated



4

TestingTesting

Writing unit tests is an act ofWriting unit tests is an act of
designdesign
documentationdocumentation
verificationverification

Test driven development: design tests before you Test driven development: design tests before you 
design the programdesign the program
EffectsEffects

backstop for further development: add and change backstop for further development: add and change 
without fear of breaking the existing softwarewithout fear of breaking the existing software
different point of view: write from the vantage point of a different point of view: write from the vantage point of a 
caller of the program caller of the program →→ interface and function of a interface and function of a 
programprogram
forces to decouple the softwareforces to decouple the software
documentation: how to call a function? check the test!documentation: how to call a function? check the test!

Testing (cont’d)Testing (cont’d)

Unit testsUnit tests
whitewhite--box tests that verify individual box tests that verify individual 
mechanismsmechanisms
do not verify that the system works as a wholedo not verify that the system works as a whole
documents the internals of a systemdocuments the internals of a system

Acceptance testsAcceptance tests
blackblack--box tests that verify that customer box tests that verify that customer 
requirements are being metrequirements are being met
written by people (customers, QA) who do not written by people (customers, QA) who do not 
know the internal mechanisms of the systemknow the internal mechanisms of the system
documents the features of a systemdocuments the features of a system

RefactoringRefactoring

Practical definition: altering the Practical definition: altering the 
source code systematically to source code systematically to 
improve its designimprove its design

easier to understandeasier to understand
cheaper to modify cheaper to modify 
does not change its observable behavior does not change its observable behavior 
the goal is not better performancethe goal is not better performance

Benefits of RefactoringBenefits of Refactoring

Improves the design of the softwareImproves the design of the software
creates the design in the existing codecreates the design in the existing code
adjusts the design piece by piece to changing adjusts the design piece by piece to changing 
functionalityfunctionality

Helps in finding bugsHelps in finding bugs
clarifies the purpose of the code to a point clarifies the purpose of the code to a point 
where you simply cannot avoid seeing the where you simply cannot avoid seeing the 
bugsbugs

Helps in programming fasterHelps in programming faster
without refactoring you start faster but lose without refactoring you start faster but lose 
speed after a whilespeed after a while

When to Refactor?When to Refactor?

Rule of three Rule of three 
first time: just do it first time: just do it 
second time: you may duplicatesecond time: you may duplicate
third time: refactorthird time: refactor

Refactor when you add functionalityRefactor when you add functionality
refactor the code that is going to change before you make the refactor the code that is going to change before you make the 
change to understand it deeplychange to understand it deeply
if the change does not fit in easily, refactor the design to if the change does not fit in easily, refactor the design to 
enable smooth addition of the new featureenable smooth addition of the new feature

Refactor when you need to fix a bugRefactor when you need to fix a bug
a bug indicates that the code is not easy to understanda bug indicates that the code is not easy to understand

Refactor in a code reviewRefactor in a code review
if you are going through the code, why not go through the if you are going through the code, why not go through the 
design as welldesign as well

Refactor all the timeRefactor all the time
it is an integral part of designing and programmingit is an integral part of designing and programming

What Goes Wrong with Software?What Goes Wrong with Software?

You start with a clear picture in your mindYou start with a clear picture in your mind
Then something goes wrongThen something goes wrong

changes and additions are harder and harder changes and additions are harder and harder 
to maketo make
you are forced to let go of the original design you are forced to let go of the original design 
ideas ideas 
eventually even the simplest changes terrify eventually even the simplest changes terrify 
you because of rippling unexpected effects, you because of rippling unexpected effects, 
and you must redesign the whole software.and you must redesign the whole software.

You started with good intentions, so what You started with good intentions, so what 
went wrong?went wrong?



5

Seven Deadly Sins (or Symptoms of Seven Deadly Sins (or Symptoms of 
Poor Design)Poor Design)

1.1. RigidityRigidity
2.2. FragilityFragility
3.3. ImmobilityImmobility
4.4. ViscosityViscosity
5.5. Needless complexityNeedless complexity
6.6. Needless repetitionNeedless repetition
7.7. OpacityOpacity

Reading for the Next WeekReading for the Next Week

Section 2: Agile DesignSection 2: Agile Design
Chapter 7: What Is Agile Design?Chapter 7: What Is Agile Design?
Chapter 8: The SingleChapter 8: The Single--Responsibility PrincipleResponsibility Principle
Chapter 9: The OpenChapter 9: The Open––Closed PrincipleClosed Principle
Chapter 10: The Liskov Substitution PrincipleChapter 10: The Liskov Substitution Principle
Chapter 11: The DepencyChapter 11: The Depency--Inversion PrincipleInversion Principle
Chapter 12: The InterfaceChapter 12: The Interface--Segregation Segregation 
PrinciplePrinciple


