Symapiems of Poor DESign (revisiied)

Rigidity

Fragility

Immobility
. Viscosity

Needless complexity
. Needless repetition
. Opacity

Fra@iliiy

® The design is easy to break
Ochanges cause cascading effects to many.
places
Othe code breaks in unexpected places that
have no conceptual relationship with the
changed area

Ofixing the problems causes new problems

® Telltale signs
Osome modules are constantly on the bug list
Otime is used finding bugs, not fixing them
Oprogrammers are reluctant to change anything

in the code

VisE@sity

® Viscosity of the software
O changes or additions are easier to implement by
doing the wrong thing
® Viscosity of the environment
e development environment is slow and inefficient
O high compile times, long feedback time in testing,
laborious integration in a multi-team project
® Telltale signs
O when a change is needed, you are tempted to hack
rather than to preserve the original design
O you are reluctant to execute a fast feedback loop and
instead tend to code larger pieces

Rigialy

® The design is hard to change

Ochanges propagate via dependencies to

other modules
Ono continuity in the code

® Management reluctance to change

anything becomes the policy

® Telltale sign: ‘Huh, it was a lot more

complicated than I thought.”

Inmima@wility

® The design is hard to reuse
Othe code is so tangled that it is
impossible to reuse anything
® Telltale sign: a module could be
reused but the effort and risk of
separating it from the original
environment is too high

Needless Complexiiy

® Design contains elements that are not
currently useful
Otoo much anticipation of future needs

O

Odevelopers try to protect themselves against

probable future changes

Oagile principles state that you should never

anticipate future needs

® Extra complexity is needed only when
designing an application framework or
customizable component

® Telltale sign: investing in uncertainty




Needless Repeftition

® The same code appears over and
over again, in slightly different forms
Odevelopers are missing an abstraction

Obugs found in a repeating unit have to
be fixed in every repetition

® Telltale sign: overuse of cut-and-
paste

Fiverkrineiples 1o Avojdiiae
SYMPIems

. Single-Responsibility Principle
. Open-Closed Principle
Liskov Substitution Principle
Depency-Inversion Principle
. Interface-Segregation Principle

ResenSIDIlily

® Rationale behind SRP
O changes in requirements
— changes in class responsibilities
O a ‘cohesive’ responsibility is a single axis of chance
— a class should have only one responsibility.
O responsibility = a reason to change
® Violation of SRP causes spurious transitive
dependencies between modules that are hard to
anticipate — fragility
® Separating the responsibilities into interfaces
decouples them as far as rest of the application is
concerned

OpaeEiy

® The tendency of a module to become
more difficult to understand
Oevery module gets more opaque over time
Oa constant effort is needed to keep the code
readable
® easy to understand
® communicates its design
® Telltale sign: you are reluctant to fix
somebody else’s code — or even your own!

SRRHIRE Single-Respersitility Prineiple

A CLASS SHOULD HAVE ONLY
-ONE REASON TO CHANGE.

® Cohesion: how good a reason the
elements of a module have to be in the
same module

® Cohesion and SRP: the forces that cause
the module to change

SRESEX@mMple: Recianale
More than one responsibility = Separated responsibilities

Computational Computational Geometric
Geometry Geometry Rectangle

Application Application +area(): double

Graphical Rerianole
Application

)
+area(): double

Graphical
Application




OEPHIhe Open-Clesed Principle

SOFTWARE ENTITIES SHOULD BE
OPEN :FOR EXTENSION, BUT
CLOSED FOR MODIFICATION.

— BERTRAND MEYER

® 'Open for extension”: the behaviour of a module
can be extended with new behaviours to satisfy.
the changing requirements

® 'Closed for modification”: extending the module
must not result in changes to the source or even

binary code of the module

Basied@CP' Designs

STRATEGY TEMPLATE METHOD

€ Client Interf; i .
J2nt Jneerrece +policyFunction()

JA)

-serviceFunction()

Implementation

-serviceFunction()

OE@RRESIimple Heurisies

® Make all object dita private
Ochanges to public data are always at risk to
‘open’ the module
Oall clients of a module with public data
members are open to one misbehaving module
Oerrors can be difficult to find and fixes may
cause errors elsewhere
® No global variables

Oit is impossible to close a module against a
global variable

OECPkHcontd)

® Reduces rigidity
O a change does not cause a cascade of related
changes in dependent modules
® Changing the module without changing; its
source code - a contradiction?!

® How to avoid dependency on a concrete
class?
O abstraction
O dynamic binding

Straiegic Closure

® Conforming to the OCP is expensive, since it can
incur needless complexity

® All changes cannot be anticipated
O apply OCP to the most obvious changes

® Otherwise: ‘Fool me once, shame on you. Fool
me twice, shame on me.’

O once a change has occurred, it is more probable that a
similar kind of change will occur later

O apply OCP when it is needed for the first time

® A good strategy: stimulate early changes
O fast iterations
O constant feedback

LSEEIRe Liskoy Substiitii@n Principle

SUBTYPES MUST BE SUBSTITUTABLE
FOR THEIR ‘BASE TYPES.

— BARBARA LIisKov

® Functions that refer to base classes must be able
to use objects of both existing and future derived
classes without knowing it

® Inheritance must be used in a way that any
property proved about supertype objects also

holds for the subtype objects Q




LSP*and OCP

® |SP is motived by OCP (at least partly)
O abstraction and polymorphism allows us to achieve OCP,
but how to use them?
O key mechanism in statically typed languages:
inheritance
® |SP restricts the use of inheritance in a way that
OCP holds
® | SP addresses the questions of
O what are the inheritance hierarchies that give designs
conforming to OCP
O what are the common mistakes we make with
inheritance regarding OCP?

® Violation of LSP is a latent violation of OCP

Ex@mple (coni'd)

public static void playWith(Bird bird) {
bird.fly(Q;
b

Parrot myPet;
playWith(myPet); // myPet “is-a” bird and can Fly()

Penguin myOtherPet;
playWith(myOtherPet); // myOtherPet “is-a" bird
// and cannot fly()?!

&

Design by Contraci

® A class declares its behaviour
O requirements (preconditions) that must be fulfilled
O promises (postconditions) that will hold afterwards
® This forms a contract between the class and a
client using its services
O tells explicitly what the client may expect
® B. Mayer (1988): When redefining a method in a
derived (or inherited) class
O the precondition can be replaced only by a weaker one
O the postcondition can be replaced only by a stronger one
® A derived class should require no more and
provide no less than the base class

Examaple: Inheritancei@s Its Limils

public abstract class Bird {
public abstract void fly(Q);

¥

public class Parrot extends Bird {
public void fly(Q) { /* implementation */ }
public void speak() { /* implementation */ %}

public class Penguin extends Bird {
public void fly(Q) {
throw new UnsupportedOperationException();

¥

Ex@mple (coni'd)

® What went wrong?
O we did not model ‘Penguins cannot fly”
O we modelled ‘Penguins may fly, but if they try it is an
error”
® The design fails LSP
O a property assumed by the client about the base type
does not hold for the subtype
O Penguin is not a subtype of Bird
® Subtypes must respect what the client of the
base class can reasonably expect about the base
class
O but how can we anticipate what some client will expect?

LSEESInple Heuristie

® Telltale signs of LSP violation:

O degenerate functions in derived classes (i.e. overriding a
base-class method with a method that does nothing)

O throwing exceptions from derived classes
® Solution 1: inverse the inheritance relation
O if the base class has only additional behaviour
® Solution 2: extract common a base class

O if both initial and derived classes have different
behaviors

O penguins — Bird, FlyingBird, Penguin
® Sometimes it is not possible to edit the base class
O example: Java Collections Hierarchy




DIPSIRe DependencyApversion

J
. (i DIPN@ent'd)
Prineiple
® Modules with detailed implementations are not
HIGH-LEVEL MODULES SHOULD NOT DEPEND depended upon, but depend themselves upon
ON LOW-LEVEL MODULES. BOTH SHOULD abstractions : :
Z o oS ® High-level modules contain the important
H=EEND N, SR ST RFCION = business model of the application, the policy
O independent of details
O should be the focus of reuse
. DETAILS. DETAILS SHOULD DEPEND ON _ O greatest benefits are achievable here
ABSTRACTIONS. | ® Results from the rigorous use of LSP and OCP

. O OCP states the goal
— ROBERT MARTIN LSP enables it

ABSTRACTIONS SHOULD NOT DEPEND ON

O DIP shows the mechanism to achieve the goal

Example: Naive Layefing Schemée Example: Inverediliayers

anism
Y

ISPHIRE, Interface-Segiegaiion

Design 1o an Interf@ce .
Prineiple
® Rationale
abstract classes/interfaces tend to change less frequently i
O abstractions are ‘hinge points” where it is easier to extend/modify CLIENTS SHOU LD NOT BE FORCED
O no need to modify classes/interfaces that represent the abstraction
® All relationships should terminate to an abstract class or interface TO DEPEND UPON METHODS THAT
no variable should refer to a concrete class i
® use inheritance to avoid direct bindings to concrete classes THEY DO NOT USE.
O no class should derive from a concrete class
® concrete classes tend to be volatile
no method should override an implemented method of any of its base a B o
Classes g Y ® Many client pecific interfaces are better
® Exceptions H
O some classes are very unlikely to change — a little benefit in inserting than one general purpose Interface
an abstraction layer Oono ‘fat” interfaces

® you can depend on a concrete class that is not volatile (e.g. String i 5
dass) Ono non hesive interfaces
® Related to SRP

a module that creates objects automatically depends on them




FariRierfaces

® Fat interface = general purpose interface #
client-specific interface
O can cause bizarre couplings between its clients
O when one client forces a change, all other clients are
affected
® Break a fat interface into many separate
interfaces
O targeted to a single client or a group of clients

O clients depend only on the methods they use (and not
on other clients’ needs)

mpact of changes to one interface are not as big
probability of a change reduces
) no interface pollution

Example: Timer Cliepti@ilop of
Hierareny:

«interface»
TimerClient

+timeout()
/\

«interface»
merClient

+timeout()

«registers>».

Ex@mple: Door ana@ilime

public class Door {
public void lock(Q) { /* implementation */ }
public void unlock() { /* implementation */ }
public boolean isOpen() { /* Iementation */ %}

ic class Timer {
public void register(int timeout,
Tim lient client) {
/% Implementation */

P

public terface TimerC nt {
public void timeout();

bs

Example: Separationfiiieugh
Delégation

interface»
merClient

+timeout()
/\

«registers».

RolE=Bosed Inferfa@eipesign

® Interfaces are designed from the viewpoint of the
service user, not the service provider
O clients own the interfaces

® Interfaces should represent roles that clients take
when using the services of a class or component

® Classes implement many interfaces, interfaces
are implemented by many classes
O example: flying birds (as well as bats) implement

interface FlyingCreature, but penguins do not

® \ersion control by adding new interfaces for

clients requiring new services — less viscosity




Re@ding forihe Nexigeek

® Section 3: The Payroll Case Study:
OChapter 13: COMMAND and ACTIVE OBJECT

OChapter 14: TEMPLATE METHOD & STRATEGY:
Inheritance vs. Delegation

OChapter 15: FACADE and MEDIATOR

OChapter 16: SINGLETON and MONOSTATE

OChapter 17: NULL OBJECT

OChapter 18: The Payroll Case Study: Iteration
One Begins

OChapter 19: The Payroll Case Study:
Implementation




