
1

Symptoms of Poor Design (revisited)Symptoms of Poor Design (revisited)

1.1. RigidityRigidity
2.2. FragilityFragility
3.3. ImmobilityImmobility
4.4. ViscosityViscosity
5.5. Needless complexityNeedless complexity
6.6. Needless repetitionNeedless repetition
7.7. OpacityOpacity

RigidityRigidity

The design is hard to changeThe design is hard to change
changes propagate via dependencies to changes propagate via dependencies to
other modulesother modules
no continuity in the codeno continuity in the code

Management reluctance to change Management reluctance to change
anything becomes the policyanything becomes the policy
Telltale sign: ‘Huh, it was a lot more Telltale sign: ‘Huh, it was a lot more
complicated than I thought.’complicated than I thought.’

FragilityFragility

The design is easy to breakThe design is easy to break
changes cause cascading effects to many changes cause cascading effects to many
placesplaces
the code breaks in unexpected places that the code breaks in unexpected places that
have no conceptual relationship with the have no conceptual relationship with the
changed area changed area
fixing the problems causes new problemsfixing the problems causes new problems

Telltale signs Telltale signs
some modules are constantly on the bug listsome modules are constantly on the bug list
time is used finding bugs, not fixing themtime is used finding bugs, not fixing them
programmers are reluctant to change anything programmers are reluctant to change anything
in the codein the code

ImmobilityImmobility

The design is hard to reuseThe design is hard to reuse
the code is so tangled that it is the code is so tangled that it is
impossible to reuse anythingimpossible to reuse anything

Telltale sign: a module could be Telltale sign: a module could be
reused but the effort and risk of reused but the effort and risk of
separating it from the original separating it from the original
environment is too highenvironment is too high

ViscosityViscosity

Viscosity of the softwareViscosity of the software
changes or additions are easier to implement by changes or additions are easier to implement by
doing the wrong thingdoing the wrong thing

Viscosity of the environmentViscosity of the environment
the development environment is slow and inefficientthe development environment is slow and inefficient
high compile times, long feedback time in testing, high compile times, long feedback time in testing,
laborious integration in a multilaborious integration in a multi--team projectteam project

Telltale signs Telltale signs
when a change is needed, you are tempted to hack when a change is needed, you are tempted to hack
rather than to preserve the original design rather than to preserve the original design
you are reluctant to execute a fast feedback loop and you are reluctant to execute a fast feedback loop and
instead tend to code larger piecesinstead tend to code larger pieces

Needless ComplexityNeedless Complexity

Design contains elements that are not Design contains elements that are not
currently useful currently useful

too much anticipation of future needstoo much anticipation of future needs
developers try to protect themselves against developers try to protect themselves against
probable future changesprobable future changes
agile principles state that you should never agile principles state that you should never
anticipate future needsanticipate future needs

Extra complexity is needed Extra complexity is needed onlyonly when when
designing an application framework or designing an application framework or
customizable componentcustomizable component
Telltale sign: investing in uncertaintyTelltale sign: investing in uncertainty

2

Needless RepetitionNeedless Repetition

The same code appears over and The same code appears over and
over again, in slightly different formsover again, in slightly different forms

developers are missing an abstractiondevelopers are missing an abstraction
bugs found in a repeating unit have to bugs found in a repeating unit have to
be fixed in every repetitionbe fixed in every repetition

Telltale sign: overuse of cutTelltale sign: overuse of cut--andand--
pastepaste

OpacityOpacity

The tendency of a module to become The tendency of a module to become
more difficult to understandmore difficult to understand

every module gets more opaque over timeevery module gets more opaque over time
a constant effort is needed to keep the code a constant effort is needed to keep the code
readablereadable

easy to understand easy to understand
communicates its designcommunicates its design

Telltale sign: you are reluctant to fix Telltale sign: you are reluctant to fix
somebody else’s code somebody else’s code –– or even your own!or even your own!

E

E

EE

E

E E E

E

E

E E E

Five Principles to Avoid the Five Principles to Avoid the
SymptomsSymptoms

1.1. SingleSingle--Responsibility PrincipleResponsibility Principle
2.2. OpenOpen––Closed PrincipleClosed Principle
3.3. Liskov Substitution PrincipleLiskov Substitution Principle
4.4. DepencyDepency--Inversion PrincipleInversion Principle
5.5. InterfaceInterface--Segregation PrincipleSegregation Principle

SRP: The SingleSRP: The Single--Responsibility PrincipleResponsibility Principle

Cohesion: how good a reason the Cohesion: how good a reason the
elements of a module have to be in the elements of a module have to be in the
same modulesame module
Cohesion and SRP: the forces that cause Cohesion and SRP: the forces that cause
the module to changethe module to change

A class should have only
one reason to change.

A class should have only A class should have only
one reason to change.one reason to change.

ResponsibilityResponsibility

Rationale behind SRP Rationale behind SRP
changes in requirements changes in requirements
→→ changes in class responsibilitieschanges in class responsibilities
a ‘cohesive’ responsibility is a single axis of chance a ‘cohesive’ responsibility is a single axis of chance
→→ a class should have only one responsibilitya class should have only one responsibility
responsibility = a reason to changeresponsibility = a reason to change

Violation of SRP causes spurious transitive Violation of SRP causes spurious transitive
dependencies between modules that are hard to dependencies between modules that are hard to
anticipate anticipate →→ fragilityfragility
Separating the responsibilities into interfaces Separating the responsibilities into interfaces
decouples them as far as rest of the application is decouples them as far as rest of the application is
concernedconcerned

SRP Example: RectangleSRP Example: Rectangle

Separated responsibilitiesSeparated responsibilities

ComputationalComputational
GeometryGeometry

ApplicationApplication

Graphical Graphical
ApplicationApplication

GUIGUI

GeometricGeometric
RectangleRectangle

+area(): double+area(): double

RectangleRectangle

+draw()+draw()

ComputationalComputational
GeometryGeometry

ApplicationApplication

Graphical Graphical
ApplicationApplication

More than one responsibilityMore than one responsibility

GUIGUI
RectangleRectangle

+draw()+draw()
+area(): double+area(): double

3

OCP: The OpenOCP: The Open––Closed PrincipleClosed Principle

‘‘Open for extension’: the behaviour of a module Open for extension’: the behaviour of a module
can be extended with new behaviours to satisfy can be extended with new behaviours to satisfy
the changing requirementsthe changing requirements
‘Closed for modification’: extending the module ‘Closed for modification’: extending the module
must not result in changes to the source or even must not result in changes to the source or even
binary code of the modulebinary code of the module

Software entities should be
open for extension, but
closed for modification.

– Bertrand Meyer

Software entities should be Software entities should be
open for extension, but open for extension, but
closed for modification. closed for modification.

–– Bertrand MeyerBertrand Meyer

OCP (cont’d)OCP (cont’d)

Reduces rigidity Reduces rigidity
a change does not cause a cascade of related a change does not cause a cascade of related
changes in dependent moduleschanges in dependent modules

Changing the module without changing its Changing the module without changing its
source code source code –– a contradiction?!a contradiction?!
How to avoid dependency on a concrete How to avoid dependency on a concrete
class?class?

abstraction abstraction
dynamic bindingdynamic binding

Basic OCP DesignsBasic OCP Designs

ClientClient ««interfaceinterface»»
Client InterfaceClient Interface

ServerServer

SSTRATEGYTRATEGY

PolicyPolicy

+policyFunction()+policyFunction()
--serviceFunction()serviceFunction()

ImplementationImplementation

--serviceFunction()serviceFunction()

TTEMPLATEEMPLATE MMETHODETHOD

Strategic ClosureStrategic Closure

Conforming to the OCP is expensive, since it can Conforming to the OCP is expensive, since it can
incur needless complexityincur needless complexity
All changes cannot be anticipatedAll changes cannot be anticipated

apply OCP to the most obvious changes apply OCP to the most obvious changes

Otherwise: ‘Fool me once, shame on you. Fool Otherwise: ‘Fool me once, shame on you. Fool
me twice, shame on me.’me twice, shame on me.’

once a change has occurred, it is more probable that a once a change has occurred, it is more probable that a
similar kind of change will occur latersimilar kind of change will occur later
apply OCP when it is needed for the first timeapply OCP when it is needed for the first time

A good strategy: stimulate early changesA good strategy: stimulate early changes
fast iterationsfast iterations
constant feedbackconstant feedback

OCP: Simple HeuristicsOCP: Simple Heuristics

Make all objectMake all object-- data privatedata private
changes to public data are always at risk to changes to public data are always at risk to
‘open’ the module‘open’ the module
all clients of a module with public data all clients of a module with public data
members are open to one misbehaving modulemembers are open to one misbehaving module
errors can be difficult to find and fixes may errors can be difficult to find and fixes may
cause errors elsewherecause errors elsewhere

No global variablesNo global variables
it is impossible to close a module against a it is impossible to close a module against a
global variableglobal variable

LSP: The Liskov Substitution PrincipleLSP: The Liskov Substitution Principle

Functions that refer to base classes must be able Functions that refer to base classes must be able
to use objects of both existing and future derived to use objects of both existing and future derived
classes without knowing itclasses without knowing it
Inheritance must be used in a way that any Inheritance must be used in a way that any
property proved about supertype objects also property proved about supertype objects also
holds for the subtype objectsholds for the subtype objects

Subtypes must be substitutable
for their base types.

– Barbara Liskov

Subtypes must be substitutable Subtypes must be substitutable
for their base types.for their base types.

–– Barbara LiskovBarbara Liskov

4

LSP and OCPLSP and OCP

LSP is motived by OCP (at least partly)LSP is motived by OCP (at least partly)
abstraction and polymorphism allows us to achieve OCP, abstraction and polymorphism allows us to achieve OCP,
but how to use them?but how to use them?
key mechanism in statically typed languages: key mechanism in statically typed languages:
inheritanceinheritance

LSP restricts the use of inheritance in a way that LSP restricts the use of inheritance in a way that
OCP holds OCP holds
LSP addresses the questions ofLSP addresses the questions of

what are the inheritance hierarchies that give designs what are the inheritance hierarchies that give designs
conforming to OCPconforming to OCP
what are the common mistakes we make with what are the common mistakes we make with
inheritance regarding OCP?inheritance regarding OCP?

Violation of LSP is a latent violation of OCPViolation of LSP is a latent violation of OCP

Example: Inheritance Has Its LimitsExample: Inheritance Has Its Limits

public abstract classpublic abstract class BirdBird {{
public abstract voidpublic abstract void fly();fly();

}}

public classpublic class ParrotParrot extendsextends BirdBird {{
public voidpublic void fly() { fly() { /* implementation *//* implementation */ }}
public voidpublic void speak() { speak() { /* implementation *//* implementation */ } }

}}

public classpublic class PenguinPenguin extends extends BirdBird {{
public void public void fly() {fly() {

throw new throw new UnsupportedOperationExceptionUnsupportedOperationException();();
}}

}}

Example (cont’d)Example (cont’d)

public static voidpublic static void playWith(playWith(BirdBird bird) {bird) {
bird.fly();bird.fly();

}}

ParrotParrot myPet;myPet;
playWith(myPet); // myPet playWith(myPet); // myPet ""isis--aa" bird and can fly()" bird and can fly()

PenguinPenguin myOtherPet;myOtherPet;
playWith(myOtherPet); // myOtherPet playWith(myOtherPet); // myOtherPet "is"is--a" bird a" bird

// and // and cannot fly()?!cannot fly()?!

Example (cont’d)Example (cont’d)

What went wrong?What went wrong?
we did not model ‘Penguins cannot fly’we did not model ‘Penguins cannot fly’
we modelled ‘Penguins may fly, but if they try it is an we modelled ‘Penguins may fly, but if they try it is an
error’error’

The design fails LSPThe design fails LSP
a property assumed by the client about the base type a property assumed by the client about the base type
does not hold for the subtypedoes not hold for the subtype
PenguinPenguin is not a subtype of is not a subtype of BirdBird

Subtypes must respect what the client of the Subtypes must respect what the client of the
base class can reasonably expect about the base base class can reasonably expect about the base
classclass

but how can we anticipate what some client will expect?but how can we anticipate what some client will expect?

Design by ContractDesign by Contract

A class declares its behaviourA class declares its behaviour
requirements (preconditions) that must be fulfilledrequirements (preconditions) that must be fulfilled
promises (postconditions) that will hold afterwardspromises (postconditions) that will hold afterwards

This forms a This forms a contractcontract between the class and a between the class and a
client using its servicesclient using its services

tells explicitly what the client may expecttells explicitly what the client may expect

B. Mayer (1988): When redefining a method in a B. Mayer (1988): When redefining a method in a
derived (or inherited) classderived (or inherited) class

the precondition can be replaced only by a weaker one the precondition can be replaced only by a weaker one
the postcondition can be replaced only by a stronger onethe postcondition can be replaced only by a stronger one

A derived class should require no more and A derived class should require no more and
provide no less than the base classprovide no less than the base class

LSP: Simple HeuristicLSP: Simple Heuristic

Telltale signs of LSP violation:Telltale signs of LSP violation:
degenerate functions in derived classes (i.e. overriding a degenerate functions in derived classes (i.e. overriding a
basebase--class method with a method that does nothing)class method with a method that does nothing)
throwing exceptions from derived classesthrowing exceptions from derived classes

Solution 1: inverse the inheritance relationSolution 1: inverse the inheritance relation
if the base class has only additional behaviourif the base class has only additional behaviour

Solution 2: extract common a base classSolution 2: extract common a base class
if both initial and derived classes have different if both initial and derived classes have different
behaviorsbehaviors
penguins → penguins → BirdBird, , FlyingBirdFlyingBird, , PenguinPenguin

Sometimes it is not possible to edit the base classSometimes it is not possible to edit the base class
example: Java Collections Hierarchyexample: Java Collections Hierarchy

5

DIP: The DependencyDIP: The Dependency--Inversion Inversion
PrinciplePrinciple

High-level modules should not depend
on low-level modules. Both should

depend on abstractions.

Abstractions should not depend on
details. Details should depend on

abstractions.

– Robert Martin

HighHigh--level modules should not depend level modules should not depend
on lowon low--level modules. Both should level modules. Both should

depend on abstractions.depend on abstractions.

Abstractions should not depend on Abstractions should not depend on
details. Details should depend on details. Details should depend on

abstractions.abstractions.

–– Robert MartinRobert Martin

DIP (cont’d)DIP (cont’d)

Modules with detailed implementations are not Modules with detailed implementations are not
depended upon, but depend themselves upon depended upon, but depend themselves upon
abstractionsabstractions
HighHigh--level modules contain the important level modules contain the important
business model of the application, the policybusiness model of the application, the policy

independent of detailsindependent of details
should be the focus of reuseshould be the focus of reuse
greatest benefits are achievable heregreatest benefits are achievable here

Results from the rigorous use of LSP and OCPResults from the rigorous use of LSP and OCP
OCP states the goalOCP states the goal
LSP enables itLSP enables it
DIP shows the mechanism to achieve the goalDIP shows the mechanism to achieve the goal

Example: Naïve Layering SchemeExample: Naïve Layering Scheme

PolicyPolicy
LayerLayer

Mechanism Mechanism
LayerLayer

Utility Utility
LayerLayer

Example: Inverted LayersExample: Inverted Layers

PolicyPolicy
LayerLayer

Mechanism Mechanism
LayerLayer

PolicyPolicy

MechanismMechanism

UtilityUtility

««interfaceinterface»»
Policy ServicePolicy Service

InterfaceInterface

««interfaceinterface»»
Mechanism Mechanism

ServiceService
InterfaceInterface

Utility Utility
LayerLayer

Design to an InterfaceDesign to an Interface
RationaleRationale

abstract classes/interfaces tend to change less frequentlyabstract classes/interfaces tend to change less frequently
abstractions are ‘hinge points’ where it is easier to extend/modabstractions are ‘hinge points’ where it is easier to extend/modifyify
no need to modify classes/interfaces that represent the abstractno need to modify classes/interfaces that represent the abstractionion

All relationships should terminate to an abstract class or interAll relationships should terminate to an abstract class or interfaceface
no variable should refer to a concrete classno variable should refer to a concrete class

use inheritance to avoid direct bindings to concrete classesuse inheritance to avoid direct bindings to concrete classes
no class should derive from a concrete classno class should derive from a concrete class

concrete classes tend to be volatileconcrete classes tend to be volatile
no method should override an implemented method of any of its bano method should override an implemented method of any of its base se
classesclasses

ExceptionsExceptions
some classes are very unlikely to change some classes are very unlikely to change →→ a a little benefit in inserting little benefit in inserting
an abstraction layeran abstraction layer

you can depend on a concrete class that is not volatile (e.g. you can depend on a concrete class that is not volatile (e.g. StringString
class)class)

a module that creates objects automatically depends on thema module that creates objects automatically depends on them

ISP: The InterfaceISP: The Interface--Segregation Segregation
PrinciplePrinciple

Many clientMany client-- specific interfaces are better specific interfaces are better
than one general purpose interfacethan one general purpose interface

no ‘fat’ interfacesno ‘fat’ interfaces
no nonno non-- cohesive interfacescohesive interfaces

Related to SRPRelated to SRP

Clients should not be forced
to depend upon methods that

they do not use.

Clients should not be forced Clients should not be forced
to depend upon methods that to depend upon methods that

they do not use.they do not use.

6

Fat InterfacesFat Interfaces

Fat interface = general purpose interface ≠ Fat interface = general purpose interface ≠
clientclient--specific interfacespecific interface

can cause bizarre couplings between its clientscan cause bizarre couplings between its clients
when one client forces a change, all other clients are when one client forces a change, all other clients are
affectedaffected

Break a fat interface into many separate Break a fat interface into many separate
interfaces interfaces

targeted to a single client or a group of clientstargeted to a single client or a group of clients
clients depend only on the methods they use (and not clients depend only on the methods they use (and not
on other clients’ needs)on other clients’ needs)
impact of changes to one interface are not as bigimpact of changes to one interface are not as big
probability of a change reducesprobability of a change reduces
no interface pollutionno interface pollution

Example: Door and TimerExample: Door and Timer
public classpublic class DoorDoor {{

public void public void lock() { lock() { /* implementation *//* implementation */ }}
public void public void unlock() { unlock() { /* implementation *//* implementation */ }}
public boolean public boolean isOpen() { isOpen() { /* implementation *//* implementation */ }}

}}

public class public class Timer Timer {{

public void public void register(register(int int timeout, timeout,
TimerClientTimerClient client) { client) {

/* implementation *//* implementation */
} }} }

public interface public interface TimerClient TimerClient {{
public void public void timeout();timeout();

}}

++timeout()timeout()

Example: Timer Client at Top of Example: Timer Client at Top of
HierarchyHierarchy

TimerTimer

DoorDoor

««interfaceinterface»»
TimerClientTimerClient

TimedDoorTimedDoor

0..*0..*

Example: Separation Through Example: Separation Through
DelegationDelegation

++timeout()timeout()

TimerTimer DoorDoor««interfaceinterface»»
TimerClientTimerClient

TimedDoorTimedDoor

0..*0..*

DoorTimerDoorTimer
AdapterAdapter

+timeout()+timeout() +doorTimeout()+doorTimeout()

«creates»«creates»

«registers»«registers»

Example: Separation Through Example: Separation Through
Multiple InheritenceMultiple Inheritence

++timeout()timeout()

TimerTimer DoorDoor
««interfaceinterface»»

TimerClientTimerClient

TimedDoorTimedDoor

0..*0..*

+timeout()+timeout()

«registers»«registers»

RoleRole--Based Interface DesignBased Interface Design

Interfaces are designed from the viewpoint of the Interfaces are designed from the viewpoint of the
service user, not the service providerservice user, not the service provider

clients own the interfacesclients own the interfaces

Interfaces should represent roles that clients take Interfaces should represent roles that clients take
when using the services of a class or componentwhen using the services of a class or component
Classes implement many interfaces, interfaces Classes implement many interfaces, interfaces
are implemented by many classesare implemented by many classes

example: flying birds (as well as bats) implement example: flying birds (as well as bats) implement
interface interface FlyingCreatureFlyingCreature, but penguins do not, but penguins do not

Version control by adding new interfaces for Version control by adding new interfaces for
clients requiring new services clients requiring new services →→ less viscosityless viscosity

7

Reading for the Next WeekReading for the Next Week

Section 3: The Payroll Case StudySection 3: The Payroll Case Study
Chapter 13: CChapter 13: COMMANDOMMAND and Aand ACTIVECTIVE OOBJECTBJECT

Chapter 14: TChapter 14: TEMPLATE METHODEMPLATE METHOD & S& STRATEGYTRATEGY: :
Inheritance vs. DelegationInheritance vs. Delegation
Chapter 15: FChapter 15: FACADEACADE and Mand MEDIATOREDIATOR

Chapter 16: SChapter 16: SINGLETONINGLETON and Mand MONOSTATEONOSTATE

Chapter 17: NChapter 17: NULLULL OOBJECTBJECT

Chapter 18: The Payroll Case Study: Iteration Chapter 18: The Payroll Case Study: Iteration
One BeginsOne Begins
Chapter 19: The Payroll Case Study: Chapter 19: The Payroll Case Study:
ImplementationImplementation

