FiverBlipciples (revisited)

Single-Responsibility Principle
Open—Closed Principle

Liskov Substitution Principle
Depency-Inversion Principle
Interface-Segregation Principle

Alexander's Patterns

® What do high-quality contructs have in common?
® Structures cannot be separated from the
problems they are solving

® Similarities in the solution structures — a pattern

® Each pattern defines subproblems solved by
other smaller patterns

® A pattern is a rule that expresses a relation
between
O a context
O a problem and
O a solution

Sofiware Design Paijelins

‘[Patterns] are descriptions

of communicating objects ’ .)
and classes that are [){_‘5[0]] Fhll(‘l’ns
customized to solve a Vi nf‘ etk
general design problem in ey et
a particular context.” Object-OrigitEREE

‘A design pattern names,
abstracts, and identifies
the key aspects of a
common design structure
that make it useful for
creating a reusable object-
oriented design.’

— E. Gamma (1995):

Design Paffermns: Baekaround

® Architectural design patterns
O Christopher Alexander et al.: A Pattern Language, 1977
O Christopher Alexander: The Timeless Way of Building,
1979

® World consists of repeating instances of various
patterns
O a pattern is (possibly hidden) design know-how that
should be made explicit
O ‘a quality without name’: not measurable but
recognizable
® User-centred design
O capture the quality in a pattern language
O inhabitants should design their own buildings together
with a professional using the patterns

-

Alex@nder's Pattersi@ont'd)

‘Each pattern describes a problem which
occurs over and over again in our
environment, and then describes the core
of the solution to that problem, in such a
way that you can use this solution a
million times over, without ever doing it
the same way twice.’

— C. Alexander, The Timeless Way of
Building, 1979

Sofiware Design Pajielins (conifa)

® Reusable solutions to general design problems
® Represent solutions to problems that arise when
developing software within a particular context
O design pattern = problem—solution pair in a context
O basic steps remain the same but the exact way of
applying a pattern is always different
® Capture well-proven experience in software
development
O static and dynamic structure
O collaboration among the key participants
® Facilitate the reuse of successful software
architectures and designs

Dejimiiion of)jal DesigpiPatiern

A GENERAL SOLUTION TO A
FREQUENTLY OCCURRING

ARCHITECTURE/DESIGN PROBLEM IN A’

CONTEXT.

Not specific to any language, environment etc.

Described as a semiformal document

Addresses a common problem

Can be applied at architecture or detailed design level
Appears in a context that defines certain requirements or
forces

Ther&ang-of-Four’ DESIgn Pattermns

® Gamma et al. describe and document 23 design
patterns using a semi-formal procedure

® GOoF patterns are
O not very problem-specific
O small and low-level patterns

O focusing on flexibility and reuse through decoupling of
classes

® Underlying principles
O program to an interface, not to an implementation
O favour composition over inheritance
O find what varies and encapsulate it

Bengiiis of Design Pa@iiernns

® Patterns improve developer
communication

® Patterns enhance understanding by
documenting the architecture of a
system

® Patterns enable large-scale reuse of
software architectures

® Patterns do not provide solutions,
they inspire solutions!

M@livation

® Reusing the solutions
O learn from other good designs, not your own mistakes
) architectural building blocks for new designs
® Estabishing a common terminology
) communication and teamwork
) documenting the system
® Giving a higher-level perspective on the problem
and the process of design and object orientation
O articulate the design rationale
) make hidden design knowledge explicit and available

O name and explicate higher-level structures which are
not directly supported by a programming language

Des@ritoing a DesigniPatiern

Name Increases the design vocabulary
Intent The purpose of the pattern

Problem Description of the problem and its context,
presumptions, example

Solution How the pattern provides a solution to the
problem in the context in which it shows up

Participants The entities involved in the pattern

Consequences Benefits and drawbacks of applying the design
pattern; investigates the forces at play in the
pattern

Implementation Different choices in the implementation of the
design pattern, possibly language-dependent

Design Pafferns — tiaeEip Side

LJ Patterns are not without potential problems

) design fragmentation: more classes, more complicated
dependencies

O overkilling problems
) excessive dynamic binding, potentional performance problem
O ‘object schitzophrenia’, splitting objects
) wrong design pattern can cause much harm
() Integlatlng patterns into a software development process is
a human-intensive activity
O not a piece of ready-to-use code
O can be implemented in many ways
) not a general remedy to improve your system
® Patterns can be deceptively simple
O condensed and abstracted experience and wisdom
tterns are not written in stone!
O reject or modify them to suit your needs

Design Patterns; Seitl CONMMAND

® COMMAND and ACTIVE OBJECT
® TEMPLATE METHOD and STRATEGY

® FACADE and MEDIATOR
® SINGLETON and MONOSTATE
® NULL OBJECT

CONMAND (contd) ACIIVE OBJECT: Ex@mple

public interface Command {

® A function object; a =0
execute N

method wrapped in an
object

ks

The method can be passed «interface» tEngine {
to other methods or Command i “ommand> commands =
objects as a parameter _ _)
Decouples the object that [)llDlI‘L void addcr)mm?nd(x.uu mand c) {
" . commands.add(c) ;
invokes the operation from
the one performing it

physical and temporal unQ {

decoupling ommands . iISEmpty()) {

& java |ang e nd ¢ = commands.getFirst(Q);
. - - > commands . remove(c) ;

c.execute();

TENMPIATE METHOD andfSIRATEGY
(coniid)

® Defines the skeleton of an ® Defines a family of
i) algorithm algorithms
Application O some steps are deferred encapsulated,

) «interface» to subclasses interchangeable
+!L',n() Applicai O subclasses redefine the O algorithm can vary
#!”'t() steps without changing independently from
#idle() i the overall structure clients that use it
#cleanup() +idle() ® Used prominently in Identify the protocol that
+cleanup() frameworks provides the level of

® Cf. java.applet.Applet, abstraction, control, and
Javax.swing.JApplet interchangeability for the
client — abstract base
class
. L) it —
#init() Al andltlol??' code

. concrete derived classes
#idle()

#cleanup()

TEMPLATE METHOD OR@ISTRATEGY,

Implementation

FACADE

MEDB/ATOR

® |Imposes a policy ‘from
below’
O hidden and
unconstraining
® Promotes loose coupling
D objects do not have to
refer to one another

D simplifies communication
® Problem: monolithism
® Example:
QuickEntryMediator
D binds text-entry field to a
list QuickEn
when text is entered, the Mediator
first element matching in
the list is highlighted

VMONB@STATE: Example

public class Monostate<T> {

private static T itsValue = nu

public Monostate() { /* nothing */ %

public void set(T value) {
itsValue = value;

ks

public T get() {
return itsValue;

})

FACADBE (cont'd)

® A unified interface to a set of interfaces in
a subsystem

Dencapsulates a complex subsystem within a
single interface object

makes the subsystem easier to use
® Decouples the subsystem from its clients

f it is the only access point, it limits the
features and flexibility

® Imposes a policy ‘from above’

Oeveryone uses the facade instead the
subsystem

visible and constraining

SINELEION: Example

public class Singleton {
private static Singleton
thelnstance = null;

private Singleton() { /* nothing */ }

public static Singleton create() {
it (thelnstance null)
thelnstance = new Singleton();
return the

<anonymous»|
Document
Listener

Comparison

® SINGLETON
O applicable to any class
O lazy evaluation: if not used, not created
O not inherited: a derived class is not singleton
an be created through derivation
) non-transparent: the user knows...
O cf. java.lang. Integer.MAX_VALUE,
Java.util _Collections.EMPTY_SET
® MONOSTATE
O inherited: a derived class is monostate
O polymorphism: methods can be overridden
O normal class cannot be converted through derivation
O transparent: the user does not need to know...

NULL @BJECT

«ecreates».

Re@ding for the NexifWeek

® Section 4: Packaging the Payroll
System
OChapter 20: Principles of Package
Design
OChapter 21: FACTORY

OChapter 22: The Payroll Case Study
((GETg 87))

INULLE

public
pub
pub

pub

};

@OBJECT; Examiple

interface Employee {
lic boolean i meToPay(Date payDate);
lic void pay(Q);

lic static final Employee NULL =
new Employee() {
public boolean isTimeToPay(Date payDate) {
return false;

public void pay() { /* nothing */ }

