
1

Five Principles (revisited)Five Principles (revisited)

1.1. SingleSingle--Responsibility PrincipleResponsibility Principle
2.2. OpenOpen––Closed PrincipleClosed Principle
3.3. Liskov Substitution PrincipleLiskov Substitution Principle
4.4. DepencyDepency--Inversion PrincipleInversion Principle
5.5. InterfaceInterface--Segregation PrincipleSegregation Principle

Design Patterns: BackgroundDesign Patterns: Background

Architectural design patternsArchitectural design patterns
Christopher Alexander Christopher Alexander et al.et al.: : A Pattern LanguageA Pattern Language, 1977, 1977
Christopher Alexander: Christopher Alexander: The Timeless Way of BuildingThe Timeless Way of Building, ,
19791979

World consists of repeating instances of various World consists of repeating instances of various
patternspatterns

a pattern is (possibly hidden) design knowa pattern is (possibly hidden) design know--how that how that
should be made explicitshould be made explicit
‘a quality without name’: not measurable but ‘a quality without name’: not measurable but
recognizablerecognizable

UserUser--centred designcentred design
capture the quality in a pattern languagecapture the quality in a pattern language
inhabitants should design their own buildings together inhabitants should design their own buildings together
with a professional using the patternswith a professional using the patterns

Alexander’s PatternsAlexander’s Patterns

What do highWhat do high--quality contructs have in common? quality contructs have in common?
Structures cannot be separated from the Structures cannot be separated from the
problems they are solvingproblems they are solving
Similarities in the solution structures Similarities in the solution structures →→ a patterna pattern
Each pattern defines subproblems solved by Each pattern defines subproblems solved by
other smaller patternsother smaller patterns
A pattern is a rule that expresses a relation A pattern is a rule that expresses a relation
between between

a contexta context
a problem anda problem and
a solutiona solution

Alexander’s Patterns (cont’d)Alexander’s Patterns (cont’d)

‘Each pattern describes a problem which ‘Each pattern describes a problem which
occurs over and over again in our occurs over and over again in our
environment, and then describes the core environment, and then describes the core
of the solution to that problem, in such a of the solution to that problem, in such a
way that you can use this solution a way that you can use this solution a
million times over, without ever doing it million times over, without ever doing it
the same way twice.’the same way twice.’

–– C. Alexander, C. Alexander, The Timeless Way of The Timeless Way of
BuildingBuilding, 1979, 1979

Software Design PatternsSoftware Design Patterns

‘[Patterns] are descriptions ‘[Patterns] are descriptions
of communicating objects of communicating objects
and classes that are and classes that are
customized to solve a customized to solve a
general design problem in general design problem in
a particular context.’a particular context.’

‘A design pattern names, ‘A design pattern names,
abstracts, and identifies abstracts, and identifies
the key aspects of a the key aspects of a
common design structure common design structure
that make it useful for that make it useful for
creating a reusable objectcreating a reusable object--
oriented design.’oriented design.’

–– E. Gamma (1995):E. Gamma (1995):

Software Design Patterns (cont’d)Software Design Patterns (cont’d)

Reusable solutions to general design problemsReusable solutions to general design problems
Represent solutions to problems that arise when Represent solutions to problems that arise when
developing software within a particular contextdeveloping software within a particular context

design pattern = design pattern = problemproblem––solutionsolution pair in a pair in a contextcontext
basic steps remain the same but the exact way of basic steps remain the same but the exact way of
applying a pattern is always differentapplying a pattern is always different

Capture wellCapture well--proven experience in software proven experience in software
developmentdevelopment

static and dynamic structurestatic and dynamic structure
collaboration among the key participants collaboration among the key participants

Facilitate the reuse of successful software Facilitate the reuse of successful software
architectures and designsarchitectures and designs

2

Definition of a Design PatternDefinition of a Design Pattern

Not specific to any language, environment etc.Not specific to any language, environment etc.
Described as a semiformal documentDescribed as a semiformal document
Addresses a common problemAddresses a common problem
Can be applied at architecture or detailed design levelCan be applied at architecture or detailed design level
Appears in a context that defines certain requirements or Appears in a context that defines certain requirements or
forcesforces

A general solution to a
frequently occurring

architecture/design problem in a
context.

A general solution to a A general solution to a
frequently occurring frequently occurring

architecture/design problem in a architecture/design problem in a
context.context.

MotivationMotivation

Reusing the solutionsReusing the solutions
learn from other good designs, not your own mistakeslearn from other good designs, not your own mistakes
architectural building blocks for new designsarchitectural building blocks for new designs

Estabishing a common terminology Estabishing a common terminology
communication and teamworkcommunication and teamwork
documenting the system documenting the system

Giving a higherGiving a higher--level perspective on the problem level perspective on the problem
and the process of design and object orientationand the process of design and object orientation

articulate the design rationalearticulate the design rationale
make hidden design knowledge explicit and availablemake hidden design knowledge explicit and available
name and explicate highername and explicate higher--level structures which are level structures which are
not directly supported by a programming languagenot directly supported by a programming language

The ‘GangThe ‘Gang--ofof--Four’ Design PatternsFour’ Design Patterns

Gamma Gamma et al.et al. describe and document 23 design describe and document 23 design
patterns using a semipatterns using a semi--formal procedure formal procedure
GoF patterns areGoF patterns are

not very problemnot very problem--specificspecific
small and lowsmall and low--level patternslevel patterns
focusing on flexibility and reuse through decoupling of focusing on flexibility and reuse through decoupling of
classesclasses

Underlying principlesUnderlying principles
program to an interface, not to an implementationprogram to an interface, not to an implementation
favour composition over inheritancefavour composition over inheritance
find what varies and encapsulate itfind what varies and encapsulate it

Describing a Design PatternDescribing a Design Pattern

Different choices in the implementation of the Different choices in the implementation of the
design pattern, possibly languagedesign pattern, possibly language--dependentdependent

ImplementationImplementation

Benefits and drawbacks of applying the design Benefits and drawbacks of applying the design
pattern; investigates the forces at play in the pattern; investigates the forces at play in the
patternpattern

ConsequencesConsequences

The entities involved in the patternThe entities involved in the patternParticipantsParticipants

How the pattern provides a solution to the How the pattern provides a solution to the
problem in the context in which it shows upproblem in the context in which it shows up

SolutionSolution

Description of the problem and its context, Description of the problem and its context,
presumptions, examplepresumptions, example

ProblemProblem

The purpose of the patternThe purpose of the patternIntentIntent

Increases the design vocabularyIncreases the design vocabularyNameName

Benefits of Design PatternsBenefits of Design Patterns

Patterns improve developer Patterns improve developer
communicationcommunication
Patterns enhance understanding by Patterns enhance understanding by
documenting the architecture of a documenting the architecture of a
systemsystem
Patterns enable largePatterns enable large--scale reuse of scale reuse of
software architecturessoftware architectures
Patterns do not provide solutions, Patterns do not provide solutions,
they inspire solutions!they inspire solutions!

Design Patterns Design Patterns –– the Flip Sidethe Flip Side

Patterns are not without potential problemsPatterns are not without potential problems
design fragmentation: more classes, more complicated design fragmentation: more classes, more complicated
dependenciesdependencies
overkilling problemsoverkilling problems
excessive dynamic binding, potentional performance problemexcessive dynamic binding, potentional performance problem
‘object schitzophrenia’, splitting objects‘object schitzophrenia’, splitting objects
wrong design pattern can cause much harmwrong design pattern can cause much harm

Integrating patterns into a software development process is Integrating patterns into a software development process is
a humana human--intensive activityintensive activity

not a piece of readynot a piece of ready--toto--use codeuse code
can be implemented in many wayscan be implemented in many ways
not a general remedy to improve your systemnot a general remedy to improve your system

Patterns can be deceptively simplePatterns can be deceptively simple
condensed and abstracted experience and wisdomcondensed and abstracted experience and wisdom

Patterns are not written in stone!Patterns are not written in stone!
reject or modify them to suit your needsreject or modify them to suit your needs

3

Design Patterns: Set 1Design Patterns: Set 1

CCOMMANDOMMAND and Aand ACTIVECTIVE OOBJECTBJECT

TTEMPLATE METHODEMPLATE METHOD and Sand STRATEGYTRATEGY

FFACADEACADE and Mand MEDIATOREDIATOR

SSINGLETONINGLETON and Mand MONOSTATEONOSTATE

NNULLULL OOBJECTBJECT

CCOMMANDOMMAND

++do()do()

««interfaceinterface»»
CommandCommandSensorSensor

RelayOnRelayOn
CommandCommand

RelayOffRelayOff
CommandCommand

MotorOnMotorOn
CommandCommand

MotorOffMotorOff
CommandCommand

ClutchOnClutchOn
CommandCommand

ClutchOffClutchOff
CommandCommand

CCOMMAND OMMAND (cont’d)(cont’d)
A function object; a A function object; a
method wrapped in an method wrapped in an
objectobject
The method can be passed The method can be passed
to other methods or to other methods or
objects as a parameterobjects as a parameter
Decouples the object that Decouples the object that
invokes the operation from invokes the operation from
the one performing itthe one performing it

physical and temporal physical and temporal
decouplingdecoupling

Cf. Cf. java.lang.java.lang.RunnableRunnable

++do()do()
+undo()+undo()

««interfaceinterface»»
CommandCommand

AACTIVE CTIVE OOBJECTBJECT: Example: Example
public interfacepublic interface CommandCommand {{

public void public void execute();execute();
}}

public class public class ActiveObjectEngineActiveObjectEngine {{
private private ListList<<CommandCommand>> commands = commands = newnew LinkedListLinkedList<<CommandCommand>();>();

public voidpublic void addCommand(addCommand(CommandCommand c) {c) {

commands.add(c);commands.add(c);
}}

public voidpublic void run() {run() {
whilewhile (!commands.isEmpty()) {(!commands.isEmpty()) {

CommandCommand c = commands.getFirst();c = commands.getFirst();
commands.remove(c);commands.remove(c);
c.execute();c.execute();

} } }} } }

TTEMPLATE METHODEMPLATE METHOD and Sand STRATEGYTRATEGY

ApplicationApplication

+run()+run()
#init()#init()
#idle()#idle()
#cleanup()#cleanup()

ImplementationImplementation

#init()#init()
#idle()#idle()
#cleanup()#cleanup()

ApplicationApplication
RunnerRunner

««interfaceinterface»»
ApplicationApplication

Strategy1Strategy1 Strategy2Strategy2 Strategy3Strategy3

+init()+init()
+idle()+idle()
+cleanup()+cleanup()

+run()+run()

TTEMPLATE METHODEMPLATE METHOD and Sand STRATEGYTRATEGY
(cont’d)(cont’d)

Defines the skeleton of an Defines the skeleton of an
algorithm algorithm

some steps are deferred some steps are deferred
to subclassesto subclasses
subclasses redefine the subclasses redefine the
steps without changing steps without changing
the overall structurethe overall structure

Used prominently in Used prominently in
frameworksframeworks
Cf. Cf. java.applet.java.applet.AppletApplet, ,
javax.swing.javax.swing.JAppletJApplet

Defines a family of Defines a family of
algorithmsalgorithms

encapsulated, encapsulated,
interchangeableinterchangeable
algorithm can vary algorithm can vary
independently from independently from
clients that use itclients that use it

Identify the protocol that Identify the protocol that
provides the level of provides the level of
abstraction, control, and abstraction, control, and
interchangeability for the interchangeability for the
client client →→ abstract base abstract base
classclass
All conditional code All conditional code →→
concrete derived classesconcrete derived classes

4

FFACADEACADE

+operation1()+operation1()
+operation2()+operation2()
……

FacadeFacadeClientClient

DatabaseDatabase

ConnectionConnection DriverDriver
ManagerManagerStatementStatement

ResultSetResultSet SQLSQL
ExceptionException

PreparedPrepared
StatementStatement

FFACADEACADE (cont’d)(cont’d)

A unified interface to a set of interfaces in A unified interface to a set of interfaces in
a subsystema subsystem

encapsulates a complex subsystem within a encapsulates a complex subsystem within a
single interface objectsingle interface object
makes the subsystem easier to usemakes the subsystem easier to use

Decouples the subsystem from its clientsDecouples the subsystem from its clients
if it is the only access point, it limits the if it is the only access point, it limits the
features and flexibilityfeatures and flexibility

Imposes a policy ‘from above’Imposes a policy ‘from above’
everyone uses the facade instead the everyone uses the facade instead the
subsystemsubsystem
visible and constrainingvisible and constraining

MMEDIATOREDIATOR

Imposes a policy ‘from Imposes a policy ‘from
below’below’

hidden and hidden and
unconstrainingunconstraining

Promotes loose couplingPromotes loose coupling
objects do not have to objects do not have to
refer to one anotherrefer to one another
simplifies communicationsimplifies communication

Problem: monolithismProblem: monolithism
Example: Example:
QuickEntryMediatorQuickEntryMediator

binds textbinds text--entry field to a entry field to a
listlist
when text is entered, the when text is entered, the
first element matching in first element matching in
the list is highlightedthe list is highlighted

««anonymousanonymous»»
DocumentDocument

ListenerListener

QuickEntryQuickEntry
MediatorMediator

JListJList JTextFieldJTextField

SSINGLETONINGLETON: Example: Example

public class public class Singleton Singleton {{

private static private static SingletonSingleton

theInstance = theInstance = nullnull;;

private private SingletonSingleton() { () { /* nothing *//* nothing */ }}

public static public static SingletonSingleton create() {create() {

if if (theInstance == (theInstance == nullnull))

theInstance = theInstance = new new SingletonSingleton();();

return return theInstance;theInstance;

} }} }

MMONOSTATEONOSTATE: Example: Example

public classpublic class MonostateMonostate<T> {<T> {

private staticprivate static T itsValue = T itsValue = nullnull;;

publicpublic MonostateMonostate() { () { /* nothing *//* nothing */ }}

public voidpublic void set(T value) {set(T value) {

itsValue = value;itsValue = value;

}}

publicpublic T get() {T get() {

returnreturn itsValue;itsValue;

} }} }

ComparisonComparison

SSINGLETONINGLETON
applicable to any classapplicable to any class
lazy evaluation: if not used, not createdlazy evaluation: if not used, not created
not inherited: a derived class is not singletonnot inherited: a derived class is not singleton
can be created through derivationcan be created through derivation
nonnon--transparent: the user knows…transparent: the user knows…
cf. cf. java.lang.java.lang.IntegerInteger.MAX_VALUE.MAX_VALUE, ,
java.util.java.util.CollectionsCollections.EMPTY_SET.EMPTY_SET

MMONOSTATEONOSTATE
inherited: a derived class is monostateinherited: a derived class is monostate
polymorphism: methods can be overriddenpolymorphism: methods can be overridden
normal class cannot be converted through derivationnormal class cannot be converted through derivation
transparent: the user does not need to know…transparent: the user does not need to know…

5

NNULLULL OOBJECTBJECT

ApplicationApplication ««interfaceinterface»»
EmployeeEmployee

NullEmployeeNullEmployee EmployeeEmployee
ImplementationImplementation

«creates»«creates»

«creates»«creates»

NNULLULL OOBJECTBJECT: Example: Example

public interfacepublic interface EmployeeEmployee {{
public booleanpublic boolean isTimeToPay(isTimeToPay(DateDate payDate);payDate);
public voidpublic void pay(); pay();

public static finalpublic static final EmployeeEmployee NULL = NULL =
newnew EmployeeEmployee() {() {

public booleanpublic boolean isTimeToPay(isTimeToPay(DateDate payDate) {payDate) {
return falsereturn false;;

}}
public voidpublic void pay() { pay() { /* nothing *//* nothing */ }}

};};
} }

Reading for the Next WeekReading for the Next Week

Section 4: Packaging the Payroll Section 4: Packaging the Payroll
SystemSystem

Chapter 20: Principles of Package Chapter 20: Principles of Package
Design Design
Chapter 21: FChapter 21: FACTORYACTORY

Chapter 22: The Payroll Case Study Chapter 22: The Payroll Case Study
(Part 2)(Part 2)

