
1

Six Principles of Package DesignSix Principles of Package Design

1.1. ReuseReuse––Release Equivalence Release Equivalence
PrinciplePrinciple

2.2. CommonCommon--Reuse PrincipleReuse Principle
3.3. CommonCommon--Closure PrincipleClosure Principle
4.4. AcyclicAcyclic--Dependencies PrincipleDependencies Principle
5.5. StableStable--Dependencies PrincipleDependencies Principle
6.6. StableStable--Abstractions PrincipleAbstractions Principle

CouplingCoupling

CohesionCohesion

REP: The ReuseREP: The Reuse––Release Equivalence Release Equivalence
PrinciplePrinciple

Anything we reuse must also be released and trackedAnything we reuse must also be released and tracked
Package author should guaranteePackage author should guarantee

maintanancemaintanance
notifications on future changesnotifications on future changes
option for a user to refuse any new versionsoption for a user to refuse any new versions
support for old versions for a timesupport for old versions for a time

The granule of reuse is
the granule of release.
The granule of reuse is The granule of reuse is
the granule of release.the granule of release.

REP (cont’d)REP (cont’d)

Primary political issuesPrimary political issues
software must be partitioned so that software must be partitioned so that
humans find it convenienthumans find it convenient

Reusable package must contain Reusable package must contain
reusable classesreusable classes

either all the classes in a package are either all the classes in a package are
reusable or none of them arereusable or none of them are

Reusable by the same audienceReusable by the same audience

CRP: The CommonCRP: The Common--Reuse PrincipleReuse Principle

The classes in a package are
reused together.

If you reuse one of the
classes in a package, you

reuse them all.

The classes in a package are The classes in a package are
reused together. reused together.

If you reuse one of the If you reuse one of the
classes in a package, you classes in a package, you

reuse them all.reuse them all.

CRP (cont’d)CRP (cont’d)

If one class in a package uses another package, If one class in a package uses another package,
there is a dependency between the packagesthere is a dependency between the packages

whenever the used package is released, the using whenever the used package is released, the using
package must be revalidated and repackage must be revalidated and re--releasedreleased
when you depend on a package, you depend on every when you depend on a package, you depend on every
class in that package!class in that package!

Classes that are tightly bound with class Classes that are tightly bound with class
relationships should be in the same packagerelationships should be in the same package

these classes typically have tight couplingthese classes typically have tight coupling
example: container class and its iteratorsexample: container class and its iterators

The classes in the same package should be The classes in the same package should be
inseparable inseparable –– impossible to reuse one without impossible to reuse one without
anotheranother

CCP: The CommonCCP: The Common--Closure PrincipleClosure Principle

The classes in a package should
be closed together against the

same kind of changes.

A change that affects a closed
package affects all the

classes in that package and no
other packages.

The classes in a package should The classes in a package should
be closed together against the be closed together against the

same kind of changes. same kind of changes.

A change that affects a closed A change that affects a closed
package affects all the package affects all the

classes in that package and no classes in that package and no
other packages.other packages.

2

CCP (cont’d)CCP (cont’d)

SRP restated for packagesSRP restated for packages
a package should not have multiple reason to changea package should not have multiple reason to change

Maintainability often more important than Maintainability often more important than
reusabilityreusability

changes should occur all in one packagechanges should occur all in one package
minimizes workload related releasing, revalidating and minimizes workload related releasing, revalidating and
redistributingredistributing

Closely related to OCPClosely related to OCP
strategic closure: close against types of changes that strategic closure: close against types of changes that
are probableare probable
CCP guides to group together classes that are open to CCP guides to group together classes that are open to
the same type of changethe same type of change

ADP: The AcyclicADP: The Acyclic--Dependencies Dependencies
PrinciplePrinciple

Without cycles it is easy to compile, test and release ‘bottomWithout cycles it is easy to compile, test and release ‘bottom--up’ up’
when building the whole softwarewhen building the whole software
The packages in a cycle will become The packages in a cycle will become de factode facto a single packagea single package

compilecompile--times increasetimes increase
testing becomes difficult since a complete build is needed to tetesting becomes difficult since a complete build is needed to test a st a
single packagesingle package
developers can step over one another since they must be using developers can step over one another since they must be using
exactly the same release of each other’s packagesexactly the same release of each other’s packages

Allow no cycles in the
package dependency graph.

Allow no cycles in the Allow no cycles in the
package dependency graph.package dependency graph.

The ‘MorningThe ‘Morning--After Syndrome’After Syndrome’

Developers are modifying the same source files Developers are modifying the same source files
trying to make it work with the latest changes trying to make it work with the latest changes
somebody else did somebody else did →→ no stable version no stable version
Solution #1: the weekly build Solution #1: the weekly build

developers work alone most of the week and integrate developers work alone most of the week and integrate
on Fridayon Friday
works on mediumworks on medium--sized projectssized projects
for bigger projects, the iteration gets longer (monthly for bigger projects, the iteration gets longer (monthly
build?) build?) →→ rapid feedback is lostrapid feedback is lost

Solution #2: Solution #2:
partition the development environment into releasable partition the development environment into releasable
packages packages
ensure ADPensure ADP

ReleaseRelease--ControlControl

Partition the development environment into releasable Partition the development environment into releasable
packagespackages

package = unit of workpackage = unit of work
developer modifies the package privatelydeveloper modifies the package privately
developer releases the working package developer releases the working package
everyone else uses the released package while the developer everyone else uses the released package while the developer
can continue modifying it privately for the next releasecan continue modifying it privately for the next release

No developer is at the mercy of the othersNo developer is at the mercy of the others
everyone works independently on their own packages everyone works independently on their own packages
everyone can decide independently when to adapt the everyone can decide independently when to adapt the
packages to new releases of the packages they usepackages to new releases of the packages they use
no ‘big bang’ integration but small incrementsno ‘big bang’ integration but small increments

To avoid the ‘morningTo avoid the ‘morning--after syndrome’ the dependency tree after syndrome’ the dependency tree
must not have any cyclesmust not have any cycles

Package Structure as a Directed Package Structure as a Directed
Acyclic GraphAcyclic Graph

MyApplicationMyApplication

MessageMessage
WindowWindow

TaskTask
WindowWindow MyTasksMyTasks

DatabaseDatabase

TasksTasks MyDialogsMyDialogs

WindowsWindows

Breaking the Cycle with DIPBreaking the Cycle with DIP

MyApplicationMyApplication

YY

MyDialogsMyDialogs

XX

MyApplicationMyApplication

YY

MyDialogsMyDialogs

XX «interface»«interface»
X ServerX Server

3

Breaking the Cycle with a New Breaking the Cycle with a New
PackagePackage

MyApplicationMyApplication

MessageMessage
WindowWindow

TaskTask
WindowWindow MyTasksMyTasks

DatabaseDatabase

TasksTasks MyDialogsMyDialogs

WindowsWindows NewPackageNewPackage

Breaking the Cycle Breaking the Cycle –– a Corollarya Corollary

The package structure cannot be The package structure cannot be
designed topdesigned top––down but it evolves as down but it evolves as
the system grows and changesthe system grows and changes
Package depency diagrams are not Package depency diagrams are not
about the function of the application about the function of the application
but they are a map to the but they are a map to the buildabilitybuildability
of the applicationof the application

SDP: The StableSDP: The Stable--Dependencies Dependencies
PrinciplePrinciple

Designs cannot be completely staticDesigns cannot be completely static
some volatility is required so that the design can be maintainedsome volatility is required so that the design can be maintained
CCP: some packages are sensitive to certain types of changesCCP: some packages are sensitive to certain types of changes

A volatile package should not be depended on by a package that A volatile package should not be depended on by a package that
is difficult to changeis difficult to change

a package designed to be easy to change can (accidentally) a package designed to be easy to change can (accidentally)
become hard to change by someone else hanging a dependency become hard to change by someone else hanging a dependency
on it!on it!

Depend in the direction
of stability.

Depend in the direction Depend in the direction
of stability.of stability.

Stable and Instable PackagesStable and Instable Packages

‘‘Stable’ = not easy to changeStable’ = not easy to change
how much effort is needed to change a package: size, how much effort is needed to change a package: size,
complexity, clarity, incoming dependenciescomplexity, clarity, incoming dependencies

If other packages depend on a package, it is hard If other packages depend on a package, it is hard
to change (i.e. stable) to change (i.e. stable)

XX

YY

Stability MetricsStability Metrics

Affarent couplings Affarent couplings CCaa

the number of classes the number of classes
outside this package outside this package
that depend on classes that depend on classes
within this packagewithin this package

Efferent couplings Efferent couplings CCee

the number of classes the number of classes
inside this package inside this package
that depend on classes that depend on classes
outside this packageoutside this package

Instability Instability II
II = = CCee / (/ (CCaa + + CCee))
II = 0: maximally = 0: maximally
stable packagestable package
II = 1: maximally = 1: maximally
instable packageinstable package

DependenciesDependencies
C++: C++: #include#include

Java: Java: importimport, qualified , qualified
namesnames

SDPSDP

The The II metric of a package should be larger metric of a package should be larger
than the than the II metrics of the packages that metrics of the packages that
depends ondepends on

StableStable

InstableInstable InstableInstable InstableInstable

II = 1= 1II = 1= 1II = 1= 1

II = 0= 0

FlexibleFlexible

II > 0> 0

4

Fixing the Stability Violation Using DIPFixing the Stability Violation Using DIP

FlexibleFlexible

CC

StableStable

UU

FlexibleFlexible

CC

StableStable

UU «interface»«interface»
IUIU

UInterfaceUInterface

SAP: The StableSAP: The Stable--Abstractions PrincipleAbstractions Principle

A stable package should be abstract so that stability does not A stable package should be abstract so that stability does not
prevent it from being extendedprevent it from being extended
An instable package should be concrete since the instability allAn instable package should be concrete since the instability allows ows
the concrete code to be changed easilythe concrete code to be changed easily
SDP + SAP = DIP for packagesSDP + SAP = DIP for packages

dependencies run in the direction of abstractionsdependencies run in the direction of abstractions
Since packages have varying degrees of abstractness, we need a Since packages have varying degrees of abstractness, we need a
metric to measure the abstractness of a packagemetric to measure the abstractness of a package

A package should be as
abstract as it is stable.
A package should be as A package should be as
abstract as it is stable.abstract as it is stable.

Measuring AbstractnessMeasuring Abstractness

The number of classes in the package The number of classes in the package NNcc

The number of abstract classes in the The number of abstract classes in the
package package NNaa

abstract class = at least one pure interface and abstract class = at least one pure interface and
cannot be instantiatedcannot be instantiated

Abstractness Abstractness AA
AA = = NNaa / / NNc c

AA = 0: no abstract classes= 0: no abstract classes
AA = 1: only abstract classes = 1: only abstract classes

The AbstractnessThe Abstractness––Instability GraphInstability Graph

AA

II

The Main Sequence

The Main Sequence
Zone
ZoneofofPain

Pain

Zone
Zoneofof

Uselessness

Uselessness

(0,1)(0,1) (1,1)(1,1)

(1,0)(1,0)(0,0)(0,0)

Package Cohesion and CouplingPackage Cohesion and Coupling

REP, CRP, and CCP: cohesion within a packageREP, CRP, and CCP: cohesion within a package
‘bottom‘bottom––up’ view of partitioningup’ view of partitioning
classes in a packages must have a good reason to be classes in a packages must have a good reason to be
therethere
classes belong together according to some criteriaclasses belong together according to some criteria

political factorspolitical factors
dependencies between the packagesdependencies between the packages
package responsibilitiespackage responsibilities

ADP, SDP, and SAP: coupling between packagesADP, SDP, and SAP: coupling between packages
dependencies accross package boundariesdependencies accross package boundaries
relationships between packagesrelationships between packages

technicaltechnical
politicalpolitical
volatilevolatile

FFACTORYACTORY

DIP: prefer dependencies on abstract DIP: prefer dependencies on abstract
classesclasses

avoid dependencies on concrete (and volatile!) avoid dependencies on concrete (and volatile!)
classesclasses
any line of code that uses the any line of code that uses the newnew keyword keyword
violates DIP: violates DIP:
CircleCircle c = c = newnew CircleCircle(origin, 1);(origin, 1);

the more likely a concrete class is to change, the more likely a concrete class is to change,
the more likely depending on it will lead to the more likely depending on it will lead to
troubletrouble

How to create instances of concrete How to create instances of concrete
objects while depending only on abstract objects while depending only on abstract
interfaces interfaces →→ FFACTORYACTORY

5

Example: Creating Shapes Violates Example: Creating Shapes Violates
DIPDIP

ApplicationApplication

««interfaceinterface»»
ShapeShape

SquareSquare CircleCircle

«creates»«creates»

Example: Shapes Using FExample: Shapes Using FACTORYACTORY

++makeSquare()makeSquare()
+makeCircle()+makeCircle()

««interfaceinterface»»
ShapeFactoryShapeFactory

ApplicationApplication

ShapeFactoryShapeFactory
ImplementationImplementation

««interfaceinterface»»
ShapeShape

SquareSquare CircleCircle

«creates»«creates»

Example: Removing the Example: Removing the
Dependency CycleDependency Cycle
public interface public interface ShapeFactoryShapeFactory {{

public public ShapeShape make(make(ClassClass<? <? extendsextends ShapeShape> t);> t);
}}

public class public class ShapeFactoryImplementationShapeFactoryImplementation
implementsimplements ShapeFactoryShapeFactory {{

public public ShapeShape make(make(ClassClass<? <? extends extends ShapeShape> t) { > t) {
ifif (t == (t == CircleCircle..classclass)) return new return new CircleCircle();();
else if else if (t == (t == SquareSquare..classclass)) return new return new SquareSquare();();
throw new throw new ErrorError();();

} }} }

ShapeFactory ShapeFactory sf = sf = newnew ShapeFactoryImplementationShapeFactoryImplementation();();
ShapeShape s1 = sf.make(s1 = sf.make(CircleCircle..classclass););
ShapeShape s2 = sf.make(s2 = sf.make(SquareSquare..classclass););

Benefits of FBenefits of FACTORYACTORY

Implementations can be substituted easilyImplementations can be substituted easily
Allows testing by spoofing the actual Allows testing by spoofing the actual
implementationimplementation

««interfaceinterface»»
ShapeFactoryShapeFactory

ApplicationApplication

ShapeFactoryShapeFactory
Implementation 2Implementation 2

««interfaceinterface»»
ShapeShape

SquareSquare

CircleCircle
«creates»«creates»

ShapeFactoryShapeFactory
Implementation 1Implementation 1

ShapeFactoryShapeFactory
Implementation 3Implementation 3

«creates»«creates»

«creates»«creates»

FFACTORYACTORY –– the Flip Sidethe Flip Side

Factory is a powerful abstractionFactory is a powerful abstraction
strictly thinking DIP entails that you strictly thinking DIP entails that you
should use factories for every volatile should use factories for every volatile
classclass

Do not start out using factoriesDo not start out using factories
can cause unnecessary complexitycan cause unnecessary complexity
add them when the need becomes great add them when the need becomes great
enoughenough

Reading for the Next WeekReading for the Next Week

Section 5: The Weather Station Case Section 5: The Weather Station Case
StudyStudy

Chapter 23: CChapter 23: COMPOSITEOMPOSITE

Chapter 24: OChapter 24: OBSERVERBSERVER –– Backing into a PatternBacking into a Pattern
Chapter 25:AChapter 25:ABSTRACTBSTRACT SSERVERERVER, A, ADAPTERDAPTER, and , and
BBRIDGERIDGE

Chapter 26: PChapter 26: PROXYROXY and Sand STAIRWAYTAIRWAY TOTO HHEAVENEAVEN: :
Managing Third Party APIsManaging Third Party APIs
Chapter 27: Case Study: Weather StationChapter 27: Case Study: Weather Station

