
Multiplayer Computer Games 2007-10-31

© 2002–2007 Jouni Smed, Timo Kaukoranta 1

§8.2 Logical Platform

 communication architecture
 peer-to-peer
 client-server
 server-network

 data and control architecture
 centralized
 replicated
 distributed

Communication Architecture

Single node

Peer-to-peer

Client-server

Server-network

Communication Architecture
(cont’d)

 Logical connections
 how the messages flow

 Physical connections
 the wires between the

computers
 the limiting factor in

communication
architecture design

Example: How Many Players Can
We Put into a Two-Player LAN?

 Distributed Interactive
Simulation (DIS) protocol
data unit (PDU): 144 bytes
(1,152 bits)

 Graphics: 30 frames/second
 PDU rates

 aircraft 12 PDU/second
 ground vehicle 5 PDU/second
 weapon firing 3 PDU/second
 fully articulated human 30

PDU/second

 Bandwidth
 Ethernet LAN 10 Mbps
 modems 56 Kbps

 Assumptions:
 sufficient processor power
 no other network usage
 a mix of player types

⇒LAN: 8,680 packets/second
fully articulated humans + firing =
263 humans
aircrafts + firing = 578 aircrafts
ground vehicles + firing = 1,085
vehicles

 Typical NPSNET-IV DIS
battle
 limits to 300 players on a LAN
 processor and network

limitations

Example (cont’d)

⇒Modem: 48 packets/second
fully articulated humans + firing = 1
human
aircrafts + firing = 3 aircrafts
ground vehicles + firing = 6 vehicles

 Redesign packets
 size 22%, 32 bytes

⇒Modem: 218 packets/second
fully articulated humans + firing = 7
human
aircrafts + firing = 14 aircrafts
ground vehicles + firing = 27
vehicles

 In a two-player game on
a LAN, the protocol
selection (TCP, UDP,
broadcast,...) hardly
matters

 As the number of live or
autonomous players
increase an efficient
architecture becomes
more important

Multiplayer Client-Server Systems:
Logical Architecture

 Client-server system
 each player sends packets to

other players via a server

 Server slows down the
message delivery

 Benefits of having a server
 no need to send all packets to

all players
 compress multiple packets to a

single packet
 smooth out the packet flow
 reliable communication

without the overhead of a fully
connected game

 administration

Multiplayer Computer Games 2007-10-31

© 2002–2007 Jouni Smed, Timo Kaukoranta 2

Multiplayer Client-Server Systems:
Physical Architecture (on a LAN)

 All messages in the same wire

 Server has to provide some added-value function
 collecting data

 compressing and redistributing information

 additional computation

Physical Architecture Can Match
the Logical Architecture

Traditional Client-Server

 Server may act as
 broadcast reflector
 filtering reflector
 packet aggregation server

 Scalability problems
 all traffic goes through

the server

⇒Server-network
architecture

S

C

CC

C

C
C

C

C

C

C

C

C

C

C

Multiplayer Server-Network
Architecture

 Players can locate in the same
place in the game world, but
reside on different servers
 real world ≠ game world

 Server-to-server connections
transmit the world state
information
 WAN, LAN

 Each server serves a number
of client players
 LAN, modem, cable modem

 Scalability

Partitioning Clients across
Multiple Servers

 The servers exchange
control messages among
themselves
 inform the interests of their

clients

 Reduces the workload on
each server

 Incurs a greater latency
 The total processing and

bandwidth requirements
are greater

S

S S

SC

CC

C

C
C

C

C

C

C

C

C

C

C

Partitioning the Game World across
Multiple Servers

 Each server manages clients
located within a certain
region

 Client communicates with
different serves as it moves

 Possibility to aggregate
messages

 Eliminates a lot of network
traffic

 Requires advanced
configuration

 Is a region visible from
another region?

C
C

C

C

C

C

C

S S

S S

Multiplayer Computer Games 2007-10-31

© 2002–2007 Jouni Smed, Timo Kaukoranta 3

Server Hierarchies

 Servers themselves act as
clients

 Packet from an upstream
server:
 deliver to the interested

downstream clients

 Packet from a downstream
client:
 deliver to the interested

downstream clients
 if other regions are interested

in the packet then deliver it to
the upstream server

C
C

C

C

C

C

C

S S

S S

S

S

S

Peer-to-Peer Architectures

 In the ideal large-scale
networked game design,
avoid having servers at all
 eventually we cannot scale out
 a finite number of players

 Design goal
 peer-to-peer communication
 scalable within resources

 Peer-to-peer: communication
goes directly from the
sending player to the
receiving player (or a set of
them)

Peer-to-Peer with Multicast

 For a scalable multiplayer
game on a LAN, use
multicast

 To utilize multicast, assign
packets to proper multicast
groups

 Area-of-interest management
 assign outgoing packets to the

right groups
 receive incoming packets to the

appropriate multicast groups
 keep track of available groups
 even out stream information

Peer-Server Systems

 Peer-to-peer: minimizes
latency, consumes bandwidth

 Client-server: effective
aggregation and filtering,
increases latency

 Hybrid peer-server:
 over short-haul, high-

bandwidth links: peer-to-peer
 over long-haul, low-bandwidth

links: client-server

 Each entity has own
multicast group

 Well-connected hosts
subscribe directly to a
multicast group (peer-to-
peer)

 Poorly-connected hosts
subscribe to a forwarding server

 Forwarding server subscribes
to the entities’ multicast
groups
 aggregation, filtering

Data and Control Architectures

 Where does the data reside and how it can be updated?

 Centralized
 one node holds a full copy of the data

 Replicated
 all nodes hold a full copy of the data

 Distributed
 one node holds a partial copy of the data
 all nodes combined hold a full copy of the data

 Consistency vs. responsiveness

Requirements for Data and Control
Architectures

 Consistency: nodes should have the same view on the
data
 centralized: simple—one node binds them all!
 replicated: hard—how to make sure that every replica gets

updated?
 distributed: quite simple—only one copy of the piece of data

exists (but where?)
 Responsiveness: nodes should have a quick access to

the data
 centralized: hard—all updates must go through the centre

node
 replicated: simple—just do it!
 distributed: quite simple—just do it (if data is in the local

node) or send an update message (but to whom?)

Multiplayer Computer Games 2007-10-31

© 2002–2007 Jouni Smed, Timo Kaukoranta 4

Centralized Architecture

 Ensure that all nodes have identical information

Centralized
Data Store

StateState

State
Rea

d

Upd
ate

Update

Read

User
User
User

User
User
User

Synchronization
Locks

Problem: Who’s Got the Ball
Now?

x, y, z

A

B

‘Eventual’ Consistency

Centralized
Data Store

StateState

State
Rea

d

Upd
ate

Update

Read

User
User
User

User
User
User

Per-client
FIFO Event

Queues

Per-client
FIFO Event

Queues

Synchronization
Locks

Pull and Push

 The clients ‘pull’ information when they need it

 make a request whenever data access is needed

 problem: unnecessary delays, if the state data has not changed

 The server can ‘push’ the information to the clients
whenever the state is updated

 clients can maintain a local cache

 problem: excessive traffic, if the clients are interested only a
small subset of the overall data

Replicated Architecture
 Nodes exchange messages

directly
 ensure that all nodes receive

updates

 determine a common global
ordering for updates

 No central host

 Every node has an identical
view

 All state information is accessed
from local node

Distributed Architecture

 State information is distributed among the
participating players

 who gets what?

 what to do when a new player joins the game?

 what to do when an existing player leaves the game?

 ⇒ Entity ownership

Multiplayer Computer Games 2007-10-31

© 2002–2007 Jouni Smed, Timo Kaukoranta 5

Problem: Who’s Got the Ball
Now? (Part II)

A B

Entity Ownership

 Ensure that a shared state can only be updated by one
node at a time
 exactly one node has the ownership of the state
 the owner periodically broadcasts the value of the state

 Typically player’s own representation (avatar) is owned
by that player

 Locks on other entities are managed by a lock manager
server
 clients query to obtain ownership and contact to release it
 the server ensures that each entity has only one owner
 the server owns the entity if no one else does
 failure recovery

Lock Manager: Example

A B

Lock Manager

Grant
Lock

Request
Lock

Request
Lock

Reject
Lock

Update State

Proxy Update

A B
Update Position (A)

Request Update Position
Update Position (B)

 Non-owner sends an update request to the owner of
the state

 The owner decides whether it accepts the update
 The owner serves as a proxy
 Generates an extra message on each non-owner update
 Suitable when non-owner updates are rare or many

nodes want to update the state

Ownership Transfer

A B

Lock Manager

Update Position (A)
Request Ownership

Notify Lock
Transfer

Acknowledge
Lock Transfer

Grant Ownership
Update Position (B)

Ownership Transfer (cont’d)

 The lock manager has the lock information at all times

 If the node fails, the lock manager defines the current
lock ownership state

 Lock ownership transfer incurs extra message overhead

 Suitable when a single node is going to make a series of
updates and there is little contention among nodes
wishing to make updates

