
Multiplayer Computer Games 2007-11-01

© 2002–2007 Jouni Smed, Timo Kaukoranta 1

§8.3 Networked Application

 Department of Defense (DoD)
 SIMNET
 Distributed Interactive Simulation (DIS)
 High-Level Architecture (HLA)

 Academic NVEs
 PARADISE
 DIVE
 BrickNet
 other academic projects

 Networked games and demos
 SGI Flight, Dogfight and Falcon A.T.
 Doom
 other multiplayer games

History and Evolution

1980 1990 2000
SIMNET DIS HLA

DVE CVE
DIVE, Spline, MASSIVE, Coven

NPSNET, STOW

Military

Academic

Entertainment
Amaze

RB2

DoomMUD Battle.net
Ultima Online

Air Warrior

U.S. Department of Defense
(DoD)

 The largest developer of networked virtual
environments (NVEs) for use as simulation systems
 one of the first to develop NVEs with its SIMNET system
 the first to do work on large-scale NVEs

 SIMNET (simulator networking)
 begun 1983, delivered 1990
 a distributed military virtual environment developed for

DARPA (Defense Advanced Research Projects Agency)
 develop a ‘low-cost’ NVE for training small units (tanks,

helicopters,…) to fight as a team

SIMNET

 Technical challenges
 how to fabricate high-quality, low-cost simulators
 how to network them together to create a consistent

battlefield

 Testbed
 11 sites with 50–100 simulators at each site
 a simulator is the portal to the synthetic environment
 participants can interact/play with others
 play was unscripted free play
 confined to the chain of command

SIMNET NSA

Basic components

i. An object-event architecture

ii. A notion of autonomous simulator nodes

iii. An embedded set of predictive modelling algorithms

(i.e., ‘dead reckoning’)

i. Object-Event Architecture

 Models the world as a collection of objects
 vehicles and weapon systems that can interact
 a single object is usually managed by a single host
 ‘selective functional fidelity’

 Models interactions between objects as a
collection of events
 messages indicating a change in the world or object state

 The basic terrain and structures are separate from the
collection of objects
 if the structure can be destroyed then it has to be reclassified

as an object, whose state is continually transmitted onto the
network

Multiplayer Computer Games 2007-11-01

© 2002–2007 Jouni Smed, Timo Kaukoranta 2

ii. Autonomous Simulator Nodes

 Individual players, vehicles, and weapon systems on the network
are responsible for transmitting accurately their current state

 Autonomous nodes do not interact with the recipients by any
other way

 Recipients are responsible for
 receiving state change information
 making appropriate changes to their local model of the world

 Lack of a central server
 single point failures do not crash the whole simulation
 players can join and leave at any time (persistency)

 Each node is responsible for one or more objects
 the node has to send update packets to the network whenever its objects

have changed enough to notify the other nodes of the change
 a ‘heartbeat’ message, usually every 5 seconds

iii. Predictive Modelling
Algorithms

 An embedded and well-defined set of predictive
modelling algorithms called dead reckoning

 Average SIMNET packet rates:
 1 per second for slow-moving ground vehicles
 3 per second for air vehicles

 Other packets
 fire: a weapon has been launced
 indirect fire: a ballistic weapon has been launced
 collision: a vehicle hits an object
 impact: a weapon hits an object

Distributed Interactive
Simulation (DIS)

 Derived from SIMNET
 object-event architecture
 autonomous distributed simulation nodes
 predictive modelling algorithms

 Covers more simulation requirements
 to allow any type of player, on any type of machine
 to achieve larger simulations

 First version of the IEEE standard for DIS appeared 1993
 Protocol data unit (PDU)

 determine when each vehicle (node) should issue a PDU
 the DIS standard defines 27 different PDUs
 only 4 of them interact with the environment

 entity state, fire, detonation, and collision
 the rest of the defined PDUs

 simulation control, electronic emanations, and supporting actions
 not supported and disregarded by most DIS applications

Issuing PDUs

 The vehicle’s node is responsible of issuing PDUs
 entity state PDU

 when position, orientation, velocity changes sufficiently (i.e., others
cannot accurately predict the position any more)

 as a heartbeat if the time threshold (5 seconds) is reached after the last
entity state PDU

 fire PDU
 detonation PDU

 a fired projectile explodes
 node’s vehicle has died (death self-determination)

 collision PDU
 vehicle has collided with something
 detection is left up to the individual node

Lost PDUs 1 (2)

 Packets are sent via unreliable UDP broadcast
 State tables may differ among the hosts
 Lost detonation PDU

‘from the afterlife’

Lost PDUs 2 (2)

 Lost entity state PDU
 not a big problem
 larger jumps on the display

 Lost fire PDU
 receive entity state PDU for which no ghost entry exists

 Lost collision PDU
 continue to display a vehicle as live
 next heartbeat packet solves the situation

Multiplayer Computer Games 2007-11-01

© 2002–2007 Jouni Smed, Timo Kaukoranta 3

The Fully Distributed,
Heterogeneous Nature of DIS

 Any computer that reads/writes PDUs and manages the state of
those PDUs can participate a DIS environment

 The virtual environment can include
 virtual players (humans at computer consoles)
 constructive players (computer-driven players)
 live players (actual weapon systems)

 Problem of the advantages of the low-end machines
 the less details in the scenery, the better visuality

 Problems with modelling
 dynamic terrain

 soil movement
 environmental effects

 weather, smoke, dust,…

High-Level Architecture (HLA)

 Aims at providing a general architecture and services
for distributed data exchange.

 While the DIS protocol is closely linked with the
properties of military units and vehicles, HLA does not
prescribe any specific implementation or technology.
 could be used also with non-military applications (e.g.,

computer games)
 targeted towards new simulation developments

 HLA was issued as IEEE Standard 1516 in 2000.

Academic Research

 DoD’s projects
 large-scale NVEs

 most of the research is unavailable

 lack-of-availability, lack-of-generality

 Academic community has reinvented, extended, and
documented what DoD has done
 PARADISE

 DIVE

 BrickNet

 and many more…

PARADISE

 Performance Architecture for Advanced Distributed Interactive
Simulations Environments (PARADISE)

 Initiated in 1993 at Stanford University
 A design for a network architecture for thousands of users

 Assign a different multicast address to each active object
 Object updates similar to SIMNET and DIS
 A hierarchy of area-of-interest servers

 monitor the positions of objects
 which multicast addresses are relevant

S

DIVE

 Distributed Interactive
Virtual Environment (DIVE)

 Swedish Institute of
Computer Science

 To solve problems of
collaboration and interaction

 Simulate a large shared
memory over a network

 Distributed, fully replicated
database

 Entire database is dynamic
 add new objects
 modify the existing databases
 reliability and consistency

BrickNet

 National University of
Singapore, started in 1991

 Support for graphical,
behavioural, and network
modelling of virtual worlds

 Allows objects to be shared
by multiple virtual worlds

 No replicated database

 The virtual world is
partitioned among the
various clients

Multiplayer Computer Games 2007-11-01

© 2002–2007 Jouni Smed, Timo Kaukoranta 4

Other Academic Projects

 MASSIVE
 different interaction media: graphics, audio and text
 awareness-based filtering: each entity expresses a focus and nimbus for

each medium

 Distributed Worlds Transfer and Communication Protocol
(DWTP)
 each object can specify whether a particular event requires a reliable

distribution and what is the event’s maximum update frequency

 Real-Time Transport Protocol (RTP/I)
 ensures that all application instances look as if all operations have been

executed in the same order

 Synchronous Collaboration Transport Protocol (SCTP)
 collaboration on closely coupled, highly synchronized tasks
 the interaction stream has critical messages (especially the last one) which

are sent reliably, while the rest are sent by best effort transport

Networked Demos and Games

 SGI Flight
 3D aeroplane simulator demo for Silicon Graphics workstation, 1983–84

 serial cable between two workstations
 Ethernet network
 users could see each other’s planes, but no interaction

 SGI Dogfight
 modification of Flight, 1985
 interaction by shooting
 packets were transmitted at frame rate → clogged the network
 limited up to ten players

 Falcon A.T.
 commercial game by Spectrum

Holobyte, 1988
 dogfighting between two players

using a modem

Networked Games: Doom

 id Software, 1993

 First-person shooter (FPS)
for PCs

 Part of the game was released
as shareware in 1993
 extremely popular

 created a gamut of variants

 Flooded LANs with packets
at frame rate

Networked Games: ‘First
Generation’

 Peer-to-peer architectures
 each participating computer is an equal to every other
 inputs and outputs are synchronized
 each computer executes the same code on the same set of data

 Advantages:
 determinism ensures that each player has the same virtual environment
 relatively simple to implement

 Problems:
 persistency: players cannot join and leave the game at will
 scalability: network traffic explodes with more players
 reliability: coping with communication failures
 security: too easy to cheat

Networked Games: ‘Second
Generation’

 Client-server architectures
 one computer (a server) keeps the game state and makes decisions on

updates
 clients convey players’ input and display the appropriate output but do

not inlude (much) game logic

 Advantages:
 generates less network traffic
 supports more players
 allows persistent virtual worlds

 Problems:
 responsiveness: what if the connection to the server is slow or the server

gets overburdened?
 security: server authority abuse, client authority abuse

Networked Games: ‘Third
Generation’

 Client-server architecture with prediction algorithms
 clients use dead reckoning

 Advantages:
 reduces the network traffic further
 copes with higher latencies and packet delivery failures

 Problems:
 consistency: if there is no unequivocal game state, how to

solve conflicts as they arise?
 security: packet interception, look-ahead cheating

Multiplayer Computer Games 2007-11-01

© 2002–2007 Jouni Smed, Timo Kaukoranta 5

Networked Games: ‘Fourth
Generation’

 Generalized client-server architecture
 the game state is stored in a server
 clients maintain a subset of the game state locally to reduce

communication

 Advantages:
 traffic between the server and the clients is reduced
 clients can response more promptly

 Problems:
 boundaries: what data is kept locally in the client?
 updating: does the subset of game state change over time?
 consistency: how to solve conflicts as they occur?

Communication Layers
(Revisited)

 physical platform
 bandwidth, latency
 unicasting, multicasting, broadcasting
 TCP/IP, UDP/IP

 logical platform
 peer-to-peer, client-server, server-network
 centralized, replicated, distributed

 networked application
 military simulations, networked virtual environments
 multiplayer computer games

