촳 獛

Dead Reckoning of Shared State

- Transmit state update packets less frequently
- Use received information to *approximate* the true shared state
- In between updates, each node predicts the state of the entities

Dead Reckoning Protocol

DR protocol consists of two elements:

- prediction technique
 - how the entity's current state is computed based on previously received update packets
- convergence technique
 - how to correct the state information when an update is received

Prediction Using Derivative Polynomials

- The most common DR protocols use derivative polynomials
- Involves various derivatives of the entity's current position
- Derivatives of position
 - 1. velocity
 - 2. acceleration
 - 3. jerk

Zero-Order and First-Order Polynomials

- Zero-order polynomial
 - position *p*
 - the object's instantaneous position, no derivative information
 - predicted position after t seconds = p

First-order polynomial

- velocity v
- predicted position after *t* seconds = vt + p
- update packet provides current position and velocity

Second-Order Polynomials

- We can usually obtain better prediction by incorporating more derivatives
- Second-order polynomial
 - acceleration a
 - predicted position after t seconds
 = 1/2at² + vt + p
 - update packet: current position, velocity, and acceleration
 - popular and widely used
 - easy to understand and implement
 - fast to compute

۲

relatively good predictions of position

Hybrid Polynomial Prediction The remote host can dynamically choose the order of prediction polynomial first-order or second-order? First-order fewer computational operations good when acceleration changes frequently or when acceleration is minimal prediction can be more accurate without acceleration information

Position History-Based Dead Reckoning

- Chooses dynamically between first-order and second-order
- Evaluates the object's motion over the three most recent position updates
- If acceleration is minimal or substantial, use first-order
 threshold cut-off values for each entity
- The acceleration behaviour affects to the convergence algorithm selection
- Ignores instantaneous derivative information
 update packets only contain the most recent position
 estimate velocity and acceleration
- Reduces bandwidth requirement
- Improves prediction accuracy in many cases

Limitations of Derivative Polynomials

- Add more terms to the derivative polynomial—why not?
- With higher-order polynomials, more information have to be transmitted
- The computational complexity increases
 each additional term requires few extra operations
- Sensitivity to errors
 - derivative information must be accurate
 - inaccurate values for the higher derivatives might actually make the prediction worse

Limitations of Derivative Polynomials (cont'd)

- Hard to get accurate instantaneous information
 - entity models typically contain velocity and acceleration
 - higher-order derivatives must be estimated or tracked
 defining jerk (change in acceleration):
 - predict human behaviour
 air resistance, muscle tension, collisions,.
 - values of higher-order derivatives tend to change more rapidly than lower-order derivatives
- \Rightarrow High-order derivatives should generally be avoided
- The Law of Diminishing Returns
 - more effort typically provides progressively less impact on the overall effectiveness of a particular technique

Object-Specialized Prediction Derivative polynomials do not take into account what the entity is currently doing what the entity is capable of doing

- what the entity is capable of doi:
 who is controlling the entity
- Managing a wide variety of dead reckoning protocols is expensive
- Aircraft making military flight manoeuvers
 constant acceleration and instant velocity => position trajectory
 the aeroplane's orientation angle

- All information does not need to be transmitted
 dancing is relevant not the footwark
 - dancing is relevant not the footwork, fire not the flames,...
- In general, precise behaviour would be nice but overall behaviour is enough

Convergence Algorithms

- Prediction estimates the future value of the shared state
- Convergence tells how to correct inexact prediction
- Correct predicted state quickly but without noticeable visual distortion

Nonregular Update Generation

- By taking advance of knowledge about the computations at remote host, the source host can reduce the required state update rate
- The source host can use the same prediction algorithm than the remote hosts
- Transmit updates only when there is a significant divergence between the actual position and the predicted position

Advantages of Nonregular Transmissions

- Reduces update rates, if prediction algorithm is reasonable accurate
- Allows to make guarantees about the overall accuracy
- The source host can dynamically balance its network transmission resources
 - limited bandwidth \Rightarrow increase error threshold
- Nonregular updates provide a way to dynamically balance consistency and responsiveness based on the changing consistency demands

Lack of Update Packets

- If the prediction algorithm is really good, or if the entity is not moving significantly, the source might never send any updates
- New participants never receive any initial state
- Recipients cannot tell the difference between receiving no updates because
 - the object's behaviour has not changed
 - the network has failed
 - the object has left the game world
- Solution: timeout on packet transmissions

Dead Reckoning: Advantages and Drawbacks

- Reduces bandwidth requirements because updates can be transmitted at lower-than-frame-rate
- Because hosts receive updates about remote entities at a slower rate than local entities, receivers must use prediction and convergence to integrate remote and local entities
- Does not guarantee identical view for all participants
 tolerate and adapt to potential differences
- Complex to develop, maintain, and evaluate
- Dead reckoning algorithms must often be customized for particular objects
- Are entities predictable?