
Multiplayer Computer Games 2007-11-07

© 2002–2007 Jouni Smed, Timo Kaukoranta 1

§9.3 Dead Reckoning

 navigational technique

(x0, y0)

(x, y)

v
t

Dynamic Shared State

 Dynamic shared state constitutes the changing
information that multiple nodes must maintain
 participants, their locations and behaviours
 environment itself, all objects, weather, natural laws,...

 In a highly dynamic environment, almost all information
about the game world may change ⇒ needs to be shared

 Accuracy is fundamental to creating realistic
environments

 Makes an environment available to multiple users
 without dynamic shared state, each user works independently

(and alone)

Example of Dynamic Shared
State

A

B

TimeCurrently After 100 ms

I’m at (10, 20) I’m at (15, 25)

A is at (10, 20)

A

B

near

Dead Reckoning of Shared State

 Transmit state update packets less frequently

 Use received information to approximate the true

shared state

 In between updates, each node predicts the state
of the entities

Dead Reckoning: Example

Time 3.5:
Position (5.5, 6)

Predicted Path

Time 3:
Position (4, 5)
Velocity (3, 2)

Transmit

Remote Prediction

Dead Reckoning Protocol

DR protocol consists of two elements:

 prediction technique

 how the entity’s current state is computed based on
previously received update packets

 convergence technique

 how to correct the state information when an update
is received

Multiplayer Computer Games 2007-11-07

© 2002–2007 Jouni Smed, Timo Kaukoranta 2

Prediction and Convergence

Time 4:
Position (7, 7)

Current Predicted Path

Time 4:
Position (6, 3)
Velocity (6, 3)

New Predicted Path
Time 3:

Position (4, 5)
Velocity (3, 2)

Prediction Using Derivative
Polynomials

 The most common DR protocols use
derivative polynomials

 Involves various derivatives of the entity’s
current position

 Derivatives of position
1. velocity
2. acceleration
3. jerk

Zero-Order and First-Order
Polynomials

 Zero-order polynomial

 position p

 the object’s instantaneous position, no derivative information

 predicted position after t seconds = p

 First-order polynomial

 velocity v

 predicted position after t seconds = vt + p

 update packet provides current position and velocity

Second-Order Polynomials

 We can usually obtain better prediction by incorporating more
derivatives

 Second-order polynomial
 acceleration a

 predicted position after t seconds
= ½at2 + vt + p

 update packet: current position, velocity, and acceleration

 popular and widely used

 easy to understand and implement

 fast to compute

 relatively good predictions of position

Hybrid Polynomial Prediction

 The remote host can dynamically choose the order of
prediction polynomial
 first-order or second-order?

 First-order
 fewer computational operations
 good when acceleration changes frequently or when

acceleration is minimal
 prediction can be more accurate without acceleration

information

Position History-Based Dead
Reckoning

 Chooses dynamically between first-order and second-order
 Evaluates the object’s motion over the three most recent

position updates
 If acceleration is minimal or substantial, use first-order

 threshold cut-off values for each entity

 The acceleration behaviour affects to the convergence algorithm
selection

 Ignores instantaneous derivative information
 update packets only contain the most recent position
 estimate velocity and acceleration

 Reduces bandwidth requirement
 Improves prediction accuracy in many cases

Multiplayer Computer Games 2007-11-07

© 2002–2007 Jouni Smed, Timo Kaukoranta 3

Limitations of Derivative
Polynomials

 Add more terms to the derivative polynomial—why
not?

 With higher-order polynomials, more information have
to be transmitted

 The computational complexity increases
 each additional term requires few extra operations

 Sensitivity to errors
 derivative information must be accurate
 inaccurate values for the higher derivatives might actually

make the prediction worse

p(t) = ½at2 + vt + p

Limitations of Derivative
Polynomials (cont’d)

 Hard to get accurate instantaneous information
 entity models typically contain velocity and acceleration
 higher-order derivatives must be estimated or tracked
 defining jerk (change in acceleration):

 predict human behaviour
 air resistance, muscle tension, collisions,…

 values of higher-order derivatives tend to change more rapidly
than lower-order derivatives

⇒High-order derivatives should generally be avoided

 The Law of Diminishing Returns
 more effort typically provides progressively less impact on the

overall effectiveness of a particular technique

Object-Specialized Prediction

 Derivative polynomials do not take into account
 what the entity is currently doing
 what the entity is capable of doing
 who is controlling the entity

 Managing a wide variety of dead reckoning protocols is
expensive

 Aircraft making military flight manoeuvers
 constant acceleration and instant

velocity ⇒ position trajectory
 the aeroplane’s orientation angle

 All information does not need to be transmitted
 dancing is relevant not the footwork,

fire not the flames,…
 In general, precise behaviour would be nice but overall

behaviour is enough

Convergence Algorithms

 Prediction estimates the future value of the shared state

 Convergence tells how to correct inexact prediction

 Correct predicted state quickly but without noticeable visual
distortion

Zero-Order Convergence (or
Snap)

Time 3.5:
Position (5.5, 6)

Time 4.5:
Position (8.5, 8)

Current Predicted Path

Time 4:
Position (6, 3)
Velocity (6, 3)

New Predicted Path

Time 4.5:
Position (9, 4.5)

Linear Convergence

Convergence
Path

Time 3.5:
Position (5.5, 6)

Time 4:
Position (6, 3)
Velocity (6, 3)

Time 4.5:
Position (8.5, 8)

Current Predicted Path

New Predicted Path

Convergence
Point

Time 5:
Position (12, 6)

Multiplayer Computer Games 2007-11-07

© 2002–2007 Jouni Smed, Timo Kaukoranta 4

Quadratic Convergence

Convergence
Point

Time 3.5:
Position (5.5, 6)

Time 4:
Position (6, 3)
Velocity (6, 3)

Time 4.5:
Position (8.5, 8)

Time 5:
Position (12, 6)

Convergence
Path

Current Predicted Path

New Predicted Path

Convergence with Cubic Spline

New Predicted
Path

Convergence
Point

Time 3.5:
Position (5.5, 6)

Time 4:
Position (6, 3)
Velocity (6, 3)

Time 4.5:
Position (8.5, 8)

Time 5:
Position (12, 6)

Current Predicted Path

Time 6:
Position (18, 9)Convergence

Path

Nonregular Update Generation

 By taking advance of knowledge about the
computations at remote host, the source host can
reduce the required state update rate

 The source host can use the same prediction algorithm
than the remote hosts

 Transmit updates only when there is a significant
divergence between the actual position and the
predicted position

Advantages of Nonregular
Transmissions

 Reduces update rates, if prediction algorithm is
reasonable accurate

 Allows to make guarantees about the overall accuracy
 The source host can dynamically balance its network

transmission resources
 limited bandwidth ⇒ increase error threshold

 Nonregular updates provide a way to dynamically
balance consistency and responsiveness based on the
changing consistency demands

Lack of Update Packets

 If the prediction algorithm is really good, or if the entity
is not moving significantly, the source might never send
any updates

 New participants never receive any initial state
 Recipients cannot tell the difference between receiving

no updates because
 the object’s behaviour has not changed
 the network has failed
 the object has left the game world

 Solution: timeout on packet transmissions

Environmental Effects

Wall

?

Multiplayer Computer Games 2007-11-07

© 2002–2007 Jouni Smed, Timo Kaukoranta 5

Dead Reckoning: Advantages
and Drawbacks

 Reduces bandwidth requirements because updates can
be transmitted at lower-than-frame-rate

 Because hosts receive updates about remote entities at a
slower rate than local entities, receivers must use
prediction and convergence to integrate remote and
local entities

 Does not guarantee identical view for all participants
 tolerate and adapt to potential differences

 Complex to develop, maintain, and evaluate
 Dead reckoning algorithms must often be customized

for particular objects
 Are entities predictable?

