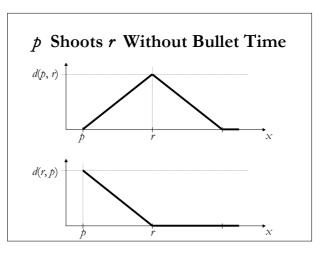
Bullet Time

- movies: visual effect combining slow motion with dynamic camera movement
- computer games: player can slow down the surroundings to have *more time* to make decisions
- easy in single player games: slow down the game!
- how about multiplayer games?

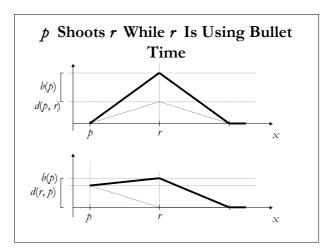
Bullet Time in Multiplayer Games

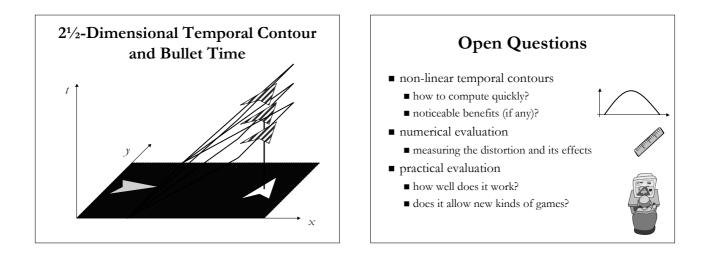
- two approaches:
 - speed up the player
 - \blacksquare slow down the other players
- if a player can slow down/speed up the time, how it will affect the other players?
 - localize the temporal distortion to the immediate surroundings of the player
- but how to do that?

 \Rightarrow local perception filters!


Adding Bullet Time to LPFs

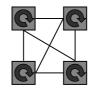
 player using the bullet time has more time to react


 \Rightarrow the delay between bullet-timed player and the other players increases


■ add artificial delay to the temporal contour

§9.5 Synchronized Simulation

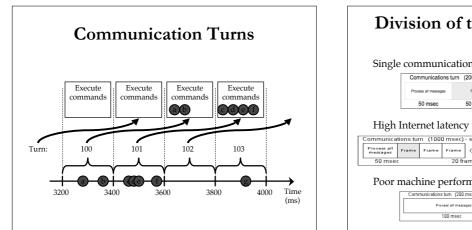
- used in Age of Empires (1997)
- command categories:
 - deterministic: computer
 indeterministic: human
- distribute the indeterministic
- commands onlydeterministic commands are
- derived from pseudo-random numbers
- → distribute the seed value only
 consistency checks and recovery
- mechanisms

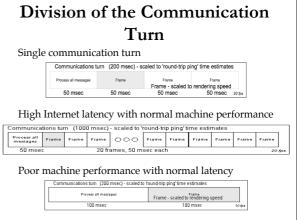

Synchronized Simulation in Age of Empires

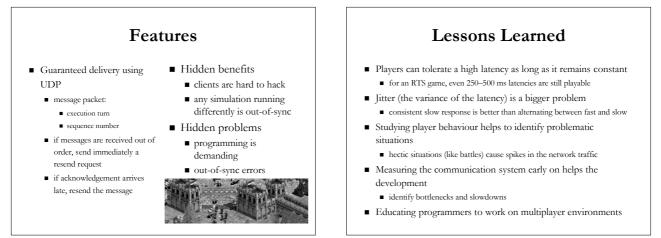
- Age of Empires game series by Ensemble Studios
- Real-time strategy (RTS) game
- Max 8 players, each can have up to 200 moving units ⇒ 1600 moving units
- ⇒ large-scale simulation■ Rough breakdown of the
 - processing tasks:30% graphic rendering
 - 30% AI and path-finding
 - 30% running the simulation and maintenance

Synchronized (or Simultaneous) Simulation

- Large simulation ⇒ a lot of data to be transmitted
- Trade-off: computation vs. communication
 - If you have more updating data than you can move on the network, the only real option is to generate the data on each client'
- Run the *exact* same simulation in each client




Handling Indeterminism


- 'Indeterministic' events are either
 - predictable (computers) orunpredictable (humans)
- Only the unpredictable events have to be transmitted ⇒ communication
 - apply an identical set of commands that were issued at the same time
- The predictable events can be calculated locally on each client ⇒ computation
- Pseudo-random numbers are deterministicAll clients use the same
 - All clients use the same seed for their random number generator
 - disseminate the seed

Pseudo-random number generator

