
Multiplayer Computer Games 2007-11-14

© 2002–2007 Jouni Smed, Timo Kaukoranta 1

Bullet Time

 movies: visual effect combining slow motion
with dynamic camera movement

 computer games: player can slow down the
surroundings to have more time to make decisions

 easy in single player games: slow down the game!
 how about multiplayer games?

Bullet Time in Multiplayer
Games

 two approaches:
 speed up the player
 slow down the other players

 if a player can slow down/speed up the time,
how it will affect the other players?
 localize the temporal distortion to the immediate

surroundings of the player

 but how to do that?

⇒ local perception filters!

Adding Bullet Time to LPFs

 player using the bullet time has more time to
react
⇒ the delay between bullet-timed player and the
other players increases

 add artificial delay to the temporal contour

p Shoots r Without Bullet Time

x

d(p, r)

rp

x

d(r, p)

rp

p Shoots r While p Is Using Bullet
Time

x

d(p, r)

rpb(p)

b(p)
x

d(r, p)

r

p

p Shoots r While r Is Using Bullet
Time

x

d(r, p)

rp

b(p)

x

d(p, r)

rp

b(p)

Multiplayer Computer Games 2007-11-14

© 2002–2007 Jouni Smed, Timo Kaukoranta 2

2½-Dimensional Temporal Contour
and Bullet Time

t

x

y

Open Questions

 non-linear temporal contours
 how to compute quickly?
 noticeable benefits (if any)?

 numerical evaluation
 measuring the distortion and its effects

 practical evaluation
 how well does it work?
 does it allow new kinds of games?

§9.5 Synchronized Simulation

 used in Age of Empires (1997)
 command categories:

 deterministic: computer
 indeterministic: human

 distribute the indeterministic
commands only

 deterministic commands are
derived from pseudo-random
numbers
→ distribute the seed value only

 consistency checks and recovery
mechanisms

Synchronized Simulation in Age of
Empires

 Age of Empires game series by
Ensemble Studios

 Real-time strategy (RTS)
game

 Max 8 players, each can have
up to 200 moving units
⇒ 1600 moving units
⇒ large-scale simulation

 Rough breakdown of the
processing tasks:
 30% graphic rendering
 30% AI and path-finding
 30% running the simulation

and maintenance

Synchronized (or Simultaneous)
Simulation

 Large simulation ⇒ a lot of
data to be transmitted

 Trade-off: computation vs.
communication
 ‘If you have more updating

data than you can move on the
network, the only real option is
to generate the data on each
client’

 Run the exact same
simulation in each client

Handling Indeterminism

 ‘Indeterministic’ events are
either
 predictable (computers) or
 unpredictable (humans)

 Only the unpredictable
events have to be transmitted
⇒ communication
 apply an identical set of

commands that were issued at
the same time

 The predictable events can
be calculated locally on each
client
⇒ computation

 Pseudo-random numbers
are deterministic

 All clients use the same
seed for their random
number generator
 disseminate the seed

Random numberSeed

Next

Pseudo-random number generator

Multiplayer Computer Games 2007-11-14

© 2002–2007 Jouni Smed, Timo Kaukoranta 3

Communication Turns

3200 3400 3600 3800 4000 Time
(ms)

a b c d e f g

100 101 102 103Turn:

Execute
commands

Execute
commands

Execute
commands

Execute
commands
c d e fa b

Division of the Communication
Turn

Single communication turn

High Internet latency with normal machine performance

Poor machine performance with normal latency

Features

 Guaranteed delivery using
UDP
 message packet:

 execution turn

 sequence number

 if messages are received out of
order, send immediately a
resend request

 if acknowledgement arrives
late, resend the message

 Hidden benefits
 clients are hard to hack
 any simulation running

differently is out-of-sync

 Hidden problems
 programming is

demanding
 out-of-sync errors
 checksums for everything

 50 Gb message logs

Lessons Learned

 Players can tolerate a high latency as long as it remains constant
 for an RTS game, even 250–500 ms latencies are still playable

 Jitter (the variance of the latency) is a bigger problem
 consistent slow response is better than alternating between fast and slow

 Studying player behaviour helps to identify problematic
situations
 hectic situations (like battles) cause spikes in the network traffic

 Measuring the communication system early on helps the
development
 identify bottlenecks and slowdowns

 Educating programmers to work on multiplayer environments

