
Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 1

§10 Cheating Prevention

 traditional cheating in computer games
 cracking the copy protection
 fiddling with the binaries: boosters, trainers, etc.

 here, the focus is on multiplayer online games
 exploiting technical advantages
 exploiting social advantages

 cheaters’ motivations
 vandalism and dominance
 peer prestige
 greed

The goals of cheating prevention

 protect the sensitive information
 cracking passwords
 pretending to be an administrator

 provide a fair playing field
 tampering the network traffic
 colluding with other players

 uphold a sense of justice inside
the game world
 abusing beginners
 gangs

Network Security

 Military
 private networks → no problem

 Business, industry, e-commerce,…
 ‘traditional’ security problems

 Entertainment industry
 multiplayer computer games, online games

 specialized problems

Taxonomy of Online Cheating 1
(4)

 Cheating by compromising passwords
 dictionary attacks

 Cheating by social engineering
 password scammers

 Cheating by denying service from peer players
 denial-of-service (DoS) attack
 clog the opponent’s network connection

Taxonomy of Online Cheating 2
(4)

 Cheating by tampering with
the network traffic
 reflex augmentation
 packet interception
 look-ahead cheating
 packet replay attack

 Cheating with authoritative clients
 receivers accept commands blindly

 requests instead of commands
 checksums from the game state

fire

firerotate

Taxonomy of Online Cheating 3
(4)

 Cheating due to illicit information
 access to replicated, hidden game data
 compromised software or data

 Cheating related with internal misuse
 privileges of system administrators
 logging critical operations into CD-ROMs

 Cheating by exploiting a bug or design flaw
 repair the observed defects with patches
 limit the original functionality to avoid the defects
 good software design in the first place!



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 2

Taxonomy of Online Cheating 4
(4)

 Cheating by collusion
 two or more players play together without

informing the other participants
 one cheater participates as two or more players

 Cheating related to virtual assets
 demand ⇒ supply ⇒ market ⇒ money flow ⇒ cheating

 Cheating by offending other players
 acting against the ‘spirit’ of the game

Breaking the control protocol:
Maladies & remedies

 malady: change data in the messages and observe effects
 remedy: checksums (MD5 algorithm)
 malady: reverse engineer the checksum algorithm
 remedy: encrypt the messages
 malady: attack with packet replay
 remedy: add state information (pseudo-random numbers)
 malady: analyse messages based on their sizes
 remedy: modify messages and add a variable amount of

junk data to messages

MD5 algorithm

 message digest = a constant length ‘fingerprint’ of the
message

 no one should be able to produce
 two messages having the same message digest
 the original message from a given message digest

 R. L. Rivest: MD5 algorithm
 produces a 128-bit message digest from

an arbitrary length message

 collision attack: different messages with the same
fingerprint

 finding collisions is (now even technically!) possible
 what is the future of message digest algorithms?

Illicit information

 access to replicated, hidden game data
 removing the fog of war
 compromised graphics rendering drivers

 cheaters have more knowledge than they should have
→ passive cheating

 compromised software or data
 counter-measures in a networked environment

 centralized: server maintains integrity among the clients
 distributed: nodes check the validity of each other’s

commands to detect cheaters

Exploiting design defects

 what can we do to poor designs!
 repair the observed defects with patches
 limit the original functionality to avoid the defects

 client authority abuse
 information from the clients is taken face-value regardless its

reliability

 unrecognized (or unheeded) features of the network
 operation when the latencies are high
 coping with DoS and other attacks

Denial-of-Service (DoS) Attack

 Attack types:
 logic attack: exploit flaws in the software
 flooding attack: overwhelm the victim’s resources by sending

a large number of spurious requests

 Distributed DoS attack: attack simultaneously from
multiple (possibly cracked) hosts

 IP spoofing: forge the source address of the outgoing
packets

 Consequences:
 wasted bandwidth, connection blockages
 computational strain on the hosts



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 3

Analysing DoS Activity

 Backscatter analysis
 Spoofing using random

source address
 A host on the Internet

receives unsolicited
responses

 An attack of m packets,
monitor n addresses

 Expectation of observing
an attack: E(X) = nm/232

DoS: Selected Results

 Three week-long logging periods, February 2001

 >12,000 attacks, >5,000 distinct targets

 Significant number of attacks were directed against
 home machines

 users running Internet Relay Chat (IRC)

 users with names that are sexually suggestive or incorporate themes of
drug use

 users supporting multiplayer games

 In addition to well-known Internet sites, a large range of small
and medium sized businesses were targeted

DoS: Most Attacked Top-Level
Domains

Look-ahead cheating
p1 p2

a1 = Rock

a2 = Paper

a2 = Paper

s = 2 

a1 = Rock

s = 0 

Two problems

 delaying one’s decision
 announce own action only after learning the

opponent’s decision
 one-to-one and one-to-many

 inconsistent decisions
 announce different actions for the same turn to

different opponents
 one-to-many

Lockstep protocol

1. Announce a commitment to an action.
 commitment can be easily calculated from the action but

the action cannot be inferred from the commitment
 formed with a one-way function (e.g., hash)

2. When everybody has announced their commitments
for the turn, announce the action.

 everybody knows what everybody else has promised to do

3. Verify that the actions correspond to the
commitments.

 if not, then somebody is cheating…



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 4

Lockstep protocol
p1 p2

c1 = H(a1) = 4736

c1 = 4736

a1 = Rock a2 = Scissors
c2 = H(a2) = 1832

c2 = 1832

a1 = Rock

a1 = Rock

a2 = Paper

a2 = Paper

H(a2) = 5383 ≠ c2

Loosening the synchronization 1(2)

 the slowest player dictates the speed
 short turns
 time limits for the announcements

 asynchronous lockstep protocol
 sphere of influence: synchronization is needed

only when the players can affect each other in
the next turn(s)

 otherwise, the players can proceed
asynchronously

Loosening the synchronization 2(2)

 pipelined lockstep protocol
 player can send several commitments which

are pipelined
 drawback: look-ahead cheating if a player

announces action earlier than required

 adaptive pipeline protocol
 measure the actual latencies between the

players
 grow or shrink the pipeline size accordingly

Drawbacks of the lockstep protocol

 requires two separate message transmissions
 commitment and action are sent separately
 slows down the communication

 requires a synchronization step
 the slowest player dictates the pace

 improvements: asynchronous lockstep, pipelined lockstep,
adaptive pipeline lockstep

 does not solve the inconsistency problem!

Idea #1: Let’s get rid of the repeat!

 send only a single message
 but how can we be sure that the opponent cannot learn the

action before annoucing its own action?

 the message is an active object, a delegate
 program code to be run by the receiver (host)
 delegate’s behaviour cannot be worked out by analytical

methods alone
 guarantees the message exchange on a possibly hostile

environment

 delegate provides the action once the host has sent its
own action using the delegate dr

apcp(ap)

arcr(ar)

Example with two players

apcp(ap)
Dr

ar

Ap Ar

cr(ar)

Dp

cr(cp(ap)) cr(cp(ap))

cp(cr(ar))

dp

cp(cr(ar))



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 5

Threats

 what if the host delays or prevents the delegate’s
message from getting to its originator?
 the host will not receive the next delegate until the message is

sent

 what if the originator is malicious and the delegate spies
or wastes the host’s resources?
 sandbox: the host restricts the resources available to the

delegate
 how can the delegate be sure that it is sending messages

to its originator?
 communication check-up

Communication check-up

 the delegate sends a unique
identification to its originator
 static and dynamic information

 the delegate waits until the
originator has responded
correctly

 check-ups are done randomly
 probability can be quite low
 host cannot know whether the

transmission is the actual message
or just a check-up

Dr
Dp

Ap Ar

Idea #2: Peer pressure

 players gossip the other players’ actions from the
previous turn(s)

 compare gossip and recorded actions; if there are
inconsistencies, ban the player
 cheating is detected only afterwards
 gossiping imposes a threat of getting caught

 gossip is piggybacked in the ordinary messages
 no extra transmissions are required

 how to be sure that the gossip is not forged?
 rechecking with randomly selected players

How much is enough?

 example: 10 players, 60 turns, 1 cheater who forges 10%
of messages, gossip from one previous turn
 1% gossip: P(cheater gets caught) = 0.44
 5% gossip: P(cheater gets caught) = 0.91
 10% gossip: P(cheater gets caught) = 0.98

 example: 100 players, 60 turns, 1 cheater who forges
10% of messages
 1% gossip: P(cheater gets caught) = 0.98

 example: 10 players, 360 turns, 1 cheater who forges
10% of messages
 1% gossip: P(cheater gets caught) = 0.97

Message

 action for the current turn t
 delegate for the next turn t + 1
 set of actions (i.e., gossip) from the previous

turn t − 1

mp
t ap

t Dp
t + 1 Gp

t − 1 ai
t − 1 aj

t − 1


