
Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 1

§10 Cheating Prevention

 traditional cheating in computer games
 cracking the copy protection
 fiddling with the binaries: boosters, trainers, etc.

 here, the focus is on multiplayer online games
 exploiting technical advantages
 exploiting social advantages

 cheaters’ motivations
 vandalism and dominance
 peer prestige
 greed

The goals of cheating prevention

 protect the sensitive information
 cracking passwords
 pretending to be an administrator

 provide a fair playing field
 tampering the network traffic
 colluding with other players

 uphold a sense of justice inside
the game world
 abusing beginners
 gangs

Network Security

 Military
 private networks → no problem

 Business, industry, e-commerce,…
 ‘traditional’ security problems

 Entertainment industry
 multiplayer computer games, online games

 specialized problems

Taxonomy of Online Cheating 1
(4)

 Cheating by compromising passwords
 dictionary attacks

 Cheating by social engineering
 password scammers

 Cheating by denying service from peer players
 denial-of-service (DoS) attack
 clog the opponent’s network connection

Taxonomy of Online Cheating 2
(4)

 Cheating by tampering with
the network traffic
 reflex augmentation
 packet interception
 look-ahead cheating
 packet replay attack

 Cheating with authoritative clients
 receivers accept commands blindly

 requests instead of commands
 checksums from the game state

fire

firerotate

Taxonomy of Online Cheating 3
(4)

 Cheating due to illicit information
 access to replicated, hidden game data
 compromised software or data

 Cheating related with internal misuse
 privileges of system administrators
 logging critical operations into CD-ROMs

 Cheating by exploiting a bug or design flaw
 repair the observed defects with patches
 limit the original functionality to avoid the defects
 good software design in the first place!



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 2

Taxonomy of Online Cheating 4
(4)

 Cheating by collusion
 two or more players play together without

informing the other participants
 one cheater participates as two or more players

 Cheating related to virtual assets
 demand ⇒ supply ⇒ market ⇒ money flow ⇒ cheating

 Cheating by offending other players
 acting against the ‘spirit’ of the game

Breaking the control protocol:
Maladies & remedies

 malady: change data in the messages and observe effects
 remedy: checksums (MD5 algorithm)
 malady: reverse engineer the checksum algorithm
 remedy: encrypt the messages
 malady: attack with packet replay
 remedy: add state information (pseudo-random numbers)
 malady: analyse messages based on their sizes
 remedy: modify messages and add a variable amount of

junk data to messages

MD5 algorithm

 message digest = a constant length ‘fingerprint’ of the
message

 no one should be able to produce
 two messages having the same message digest
 the original message from a given message digest

 R. L. Rivest: MD5 algorithm
 produces a 128-bit message digest from

an arbitrary length message

 collision attack: different messages with the same
fingerprint

 finding collisions is (now even technically!) possible
 what is the future of message digest algorithms?

Illicit information

 access to replicated, hidden game data
 removing the fog of war
 compromised graphics rendering drivers

 cheaters have more knowledge than they should have
→ passive cheating

 compromised software or data
 counter-measures in a networked environment

 centralized: server maintains integrity among the clients
 distributed: nodes check the validity of each other’s

commands to detect cheaters

Exploiting design defects

 what can we do to poor designs!
 repair the observed defects with patches
 limit the original functionality to avoid the defects

 client authority abuse
 information from the clients is taken face-value regardless its

reliability

 unrecognized (or unheeded) features of the network
 operation when the latencies are high
 coping with DoS and other attacks

Denial-of-Service (DoS) Attack

 Attack types:
 logic attack: exploit flaws in the software
 flooding attack: overwhelm the victim’s resources by sending

a large number of spurious requests

 Distributed DoS attack: attack simultaneously from
multiple (possibly cracked) hosts

 IP spoofing: forge the source address of the outgoing
packets

 Consequences:
 wasted bandwidth, connection blockages
 computational strain on the hosts



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 3

Analysing DoS Activity

 Backscatter analysis
 Spoofing using random

source address
 A host on the Internet

receives unsolicited
responses

 An attack of m packets,
monitor n addresses

 Expectation of observing
an attack: E(X) = nm/232

DoS: Selected Results

 Three week-long logging periods, February 2001

 >12,000 attacks, >5,000 distinct targets

 Significant number of attacks were directed against
 home machines

 users running Internet Relay Chat (IRC)

 users with names that are sexually suggestive or incorporate themes of
drug use

 users supporting multiplayer games

 In addition to well-known Internet sites, a large range of small
and medium sized businesses were targeted

DoS: Most Attacked Top-Level
Domains

Look-ahead cheating
p1 p2

a1 = Rock

a2 = Paper

a2 = Paper

s = 2 

a1 = Rock

s = 0 

Two problems

 delaying one’s decision
 announce own action only after learning the

opponent’s decision
 one-to-one and one-to-many

 inconsistent decisions
 announce different actions for the same turn to

different opponents
 one-to-many

Lockstep protocol

1. Announce a commitment to an action.
 commitment can be easily calculated from the action but

the action cannot be inferred from the commitment
 formed with a one-way function (e.g., hash)

2. When everybody has announced their commitments
for the turn, announce the action.

 everybody knows what everybody else has promised to do

3. Verify that the actions correspond to the
commitments.

 if not, then somebody is cheating…



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 4

Lockstep protocol
p1 p2

c1 = H(a1) = 4736

c1 = 4736

a1 = Rock a2 = Scissors
c2 = H(a2) = 1832

c2 = 1832

a1 = Rock

a1 = Rock

a2 = Paper

a2 = Paper

H(a2) = 5383 ≠ c2

Loosening the synchronization 1(2)

 the slowest player dictates the speed
 short turns
 time limits for the announcements

 asynchronous lockstep protocol
 sphere of influence: synchronization is needed

only when the players can affect each other in
the next turn(s)

 otherwise, the players can proceed
asynchronously

Loosening the synchronization 2(2)

 pipelined lockstep protocol
 player can send several commitments which

are pipelined
 drawback: look-ahead cheating if a player

announces action earlier than required

 adaptive pipeline protocol
 measure the actual latencies between the

players
 grow or shrink the pipeline size accordingly

Drawbacks of the lockstep protocol

 requires two separate message transmissions
 commitment and action are sent separately
 slows down the communication

 requires a synchronization step
 the slowest player dictates the pace

 improvements: asynchronous lockstep, pipelined lockstep,
adaptive pipeline lockstep

 does not solve the inconsistency problem!

Idea #1: Let’s get rid of the repeat!

 send only a single message
 but how can we be sure that the opponent cannot learn the

action before annoucing its own action?

 the message is an active object, a delegate
 program code to be run by the receiver (host)
 delegate’s behaviour cannot be worked out by analytical

methods alone
 guarantees the message exchange on a possibly hostile

environment

 delegate provides the action once the host has sent its
own action using the delegate dr

apcp(ap)

arcr(ar)

Example with two players

apcp(ap)
Dr

ar

Ap Ar

cr(ar)

Dp

cr(cp(ap)) cr(cp(ap))

cp(cr(ar))

dp

cp(cr(ar))



Multiplayer Computer Games 2007-11-26

© 2002–2007 Jouni Smed, Timo Kaukoranta 5

Threats

 what if the host delays or prevents the delegate’s
message from getting to its originator?
 the host will not receive the next delegate until the message is

sent

 what if the originator is malicious and the delegate spies
or wastes the host’s resources?
 sandbox: the host restricts the resources available to the

delegate
 how can the delegate be sure that it is sending messages

to its originator?
 communication check-up

Communication check-up

 the delegate sends a unique
identification to its originator
 static and dynamic information

 the delegate waits until the
originator has responded
correctly

 check-ups are done randomly
 probability can be quite low
 host cannot know whether the

transmission is the actual message
or just a check-up

Dr
Dp

Ap Ar

Idea #2: Peer pressure

 players gossip the other players’ actions from the
previous turn(s)

 compare gossip and recorded actions; if there are
inconsistencies, ban the player
 cheating is detected only afterwards
 gossiping imposes a threat of getting caught

 gossip is piggybacked in the ordinary messages
 no extra transmissions are required

 how to be sure that the gossip is not forged?
 rechecking with randomly selected players

How much is enough?

 example: 10 players, 60 turns, 1 cheater who forges 10%
of messages, gossip from one previous turn
 1% gossip: P(cheater gets caught) = 0.44
 5% gossip: P(cheater gets caught) = 0.91
 10% gossip: P(cheater gets caught) = 0.98

 example: 100 players, 60 turns, 1 cheater who forges
10% of messages
 1% gossip: P(cheater gets caught) = 0.98

 example: 10 players, 360 turns, 1 cheater who forges
10% of messages
 1% gossip: P(cheater gets caught) = 0.97

Message

 action for the current turn t
 delegate for the next turn t + 1
 set of actions (i.e., gossip) from the previous

turn t − 1

mp
t ap

t Dp
t + 1 Gp

t − 1 ai
t − 1 aj

t − 1


