AlsHockey—A Platform for Studying Synthetic Players

Jouni Smed, Timo Kaukoranta

Department of Information Technology, University of Turku
Turku Centre for Computer Science (TUCS), Finland

Harri Hakonen

Oy L M Ericsson Ab, Telecom R&D
Turku, Finland
Algorithmic Problems in Computer Games

♦ graphics and audio
 – 3D rendering
 – camera movements
 – adaptive audio
♦ simulation and modeling
 – game engines
♦ multiplayer networking
 – protocols and security
 – resource distribution
♦ artificial intelligence (AI)
 – computer-controlled actors
What Is AIsHockey?

♦ simplified ice hockey:
 – official IIHF rules
 – real-world measurements
 – Newtonian physics engine

♦ distributed system
 – client/server architecture

♦ the challenge: implement a collaborating team of autonomous, real-time synthetic players
Client/Server Architecture

server to clients: multicast
client to server: unicast
AlsHockey Platform

- implemented with Java
- synthetic player is an instance of a class
 - inherits methods for receiving and sending data
 - runs on own thread
- team is a collection of synthetic players
 - defined in an initialization file
 - teams can be distributed
Player’s Attributes

operation area

$m = 75 \text{ kg}$

0.50 m 0.35 m
Player’s Methods 1(3)

\[
\begin{align*}
\text{shoot}(p) & \quad 0.0 \leq p \leq 1.0 \\
\text{keepPuck}() &
\end{align*}
\]
Player’s Methods 2(3)

dash(p)
0.0 \leq p \leq 1.0

brake(p)
0.0 \leq p \leq 1.0
Player’s Methods 3(3)

head(a)

\[a = \text{angle in radians} \]

say(m)

\[m = 64\text{-bit long word} \]
Player’s Perception

♦ players
 – position
 – orientation
 – message
♦ puck
 – position
♦ auxiliary methods
♦ constants
 – measurements of the rink
import fi.utu.cs.hockey.ai.*;

public class MyAI extends AI implements Constants {
 public void react() {
 if (isPuckWithinReach()) {
 head(headingTo(0.0, THEIR_GOAL_LINE));
 brake(0.5);
 shoot(1.0);
 say(1050L);
 } else {
 head(headingTo(puck()));
 dash(1.0);
 }
 }
}
Key Questions

♦ how to achieve real-time response?
♦ how to distribute the synthetic players in a network?
♦ how autonomous the synthetic players should be?
♦ how to communicate with other synthetic players?
Observations

♦ educational tool
 – strategic, tactical and operational level decision making
 – software design
 – algorithm implementations

♦ AI programming as a game
 – game within a game
 – human player coaching synthetic players
 – engaging and entertaining
Try It Out!

- platform and teams are publicly available:
 http://staff.cs.utu.fi/staff/jouni.smed/aishockey