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Abstract

We introduce a computer game platform, AIsHockey, which
is based on the real-world game of ice hockey. The plat-
form allows us to implement and study autonomous, real-
time synthetic players (i.e., computer-controlled actors in
a game). By applying the Model-View-Controller archi-
tectural pattern we define the role of a synthetic player and
recognize its responsibilities and interfaces in the software.
We describe the AIsHockey system and discuss our experi-
ences and observations in educational and research per-
spectives.

1. Introduction

Whilst modern computer games (CGs) already excel in the
areas of graphics and sound, most players still find the ar-
tificial intelligence (AI) embedded in the games lacking.
The computer-controlled opponents or bots can be chal-
lenging at first but soon the human player begins to notice
patterns in their behavior and can easily exploit their weak-
nesses. The gaming industry is acutely aware of the prob-
lem, and the emphasis is gradually shifting towards AI de-
velopment. The companies allocate more resources—time,
money and personnel—to AI development, and during the
last six years the share of processing power reserved for
AI programs has risen from less than five percent to over
twenty percent [15].

The AI problems encountered in CGs cover a gamut
of topics from simple pathfinding to complex decision-
making problems [11, 16]. To avoid ambiguousness we use
the termsynthetic playerto denote the humanlike aspects
of AI in CGs. This emphasizes that the computer is a fel-
low participant in the game, and, obviously, this is the goal
AI in CGs. Apart from games requiring simple hand-eye
coordination, people usually want to play with or against
someone who they feel is a worthy ally or adversary. The

grand challenge for the future is to develop synthetic play-
ers to fulfill these expectations.

Academic AI researchers have awaken to the problems
and possibilities of CGs [9, 13]. Commercial CGs provide
a cheap, tested, and widely-spread environment for trying
out AI techniques. Moreover, CG environment has one
unique feature: it is not a simulation of a problem domain
but the problem domainper se[13]. This means that we
can omit problems originating from the real world such as
noisy sensor data or limitations of motor functions. Conse-
quently, while the related academic work done on military
simulations [14] or robotics [1] is valuable, CGs present
the AI problems in a much purer form.

The motivation behind theAIsHockeyplatform presented
in this paper stems from this observation. Although it is
based on a real-world game of ice hockey, it is not a simu-
lation ice hockey but a game itself. Because it is abstracted
and simpler, it allows us to concentrate on synthetic play-
ers. Simply put, we are not interested in how to skate re-
alistically or what the player can see at a given moment.
Instead, we want to study how to form a cooperating team
from a group of autonomous synthetic players.

The plan of the paper is following. We begin with an
analysis of the architectural structure of CGs in Section 2.
It is needed to explicate the relation of synthetic players
to the software as a whole. We realize this by using the
Model-View-Controller architectural pattern. In Section 3,
we describe the rules and structure of the AIsHockey plat-
form. We also give an example of a simple synthetic player.
This is followed by a discussion in Section 4, where we
summarize our experiences and observations from the team
development. Concluding remarks appear in Section 5.

2. Anatomy of computer games

Let us define a computer game as agame that is carried out
with the help of a computer program. This definition leaves
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Figure 1: Model, View and Controller in a computer game.

us some leeway, since it does not implicate that the whole
game takes place in the computer. For example, a game
of chess can be played on the screen or on a real-world
board, although the opponent is a computer program. Inci-
dentally, we can discern three roles for a computer program
in a game:

1. coordinating the game process,

2. illustrating the situation, and

3. participating as a player.

By definition a CG must act out one or more of these roles.
This role division resembles closely theModel-View-

Controller (MVC) architectural pattern for computer pro-
grams. MVC was originally developed within the Small-
talk community and later on it has been adopted as a basis
for object-oriented programming in general [8, 5]. The ba-
sic idea is that the representation of the underlying applica-
tion domain (Model) should be separated from the way it
is presented to the user (View) and from the way the user
interacts with it (Controller). Figure 1 illustrates the MVC
components and the data flow in a CG.

The Model part includes software components responsi-
ble for the coordination role (e.g., evaluating the rules and
upholding the game state). The rules and basic entity in-
formation (e.g., physical laws) form the core structures. It
remains unchanged while the state instance is created and
configured for each game process. The core structures need
not to cover all the rules, because they can be instantiated.
For example, the core structures can define the basic mech-
anism and properties of playing cards and the instance data

can provide the additional structures required for a game of
poker.

The View part handles the illustration role. A proto-view
provides an interface into the Model. It is used for creat-
ing a synthetic view for a synthetic player or for render-
ing a view to an output device. The synthetic view can be
preprocessed to suit the needs of the synthetic player (e.g.,
board coordinates rather than an image of the pieces in a
chess board). Although rendering is often identified with
visualization, it may as well include audification and other
forms of sensory feed-back. The rendering can have some
user-definable options (e.g., graphics resolution or sound
quality).

The Controller part includes the components for the par-
ticipation role. Control logic affects the Model and keeps
up the integrity (e.g., by excluding illegal moves suggested
by a player). Human player’s input is received through an
input device filtered by a driver software. The configura-
tion component provides instance data, which is used in
generating the initial state for the game. The human player
participates the data flow by perceiving information from
the output devices and generating actions to the input de-
vices. Although the illustration in Figure 1 includes only
one player, naturally there can be multiple players partic-
ipating the data flow, each with own output and input de-
vices. Moreover, the CG can be distributed among several
nodes rather than residing inside a single node (as illus-
trated). Conceptually, this is not a problem since the com-
ponents in the MVC can as well be thought to be distributed
(i.e., the data flows run through network rather inside a sin-
gle computer). In practice, however, the distributed CGs
provide their own challenges [12].

A synthetic player is a computer-generated actor in the
game. It can be an opponent (as in the game of chess),
a non-player character (NPC) which participates limitedly
(like a supporting actor), or adeus ex machinawhich can
control natural forces or godly powers and thus intervene
the game events. The more open the game world is, the
more complex the synthetic players are. This tradeoff be-
tween the Model and the Controller is obvious: if we re-
move restricting code from the core structures, we have to
reinstate it in the synthetic players. For example, if the
players can hurt themselves by walking into fire, the syn-
thetic player must know how to avoid it. Conversely, if we
rule out fire as permitted area, pathfinding for a synthetic
player becomes simpler.

As we can see in Figure 1, the data flow of the human
player and the synthetic player resemble each other. This
allows us to project humanlike features to the synthetic
player. We can argue that, in a sense, there should no be
difference between the players whether they are humans
or computer programs; if they are to operate on the same
level, both should ideally have the same powers of obser-



Figure 2: A screenshot from AIsHockey.

vation and the same capabilities. Still, synthetic players
usually cheat, and this has been the norm for a long time
[3]. Generally, the reason is obvious: a computer program
is no match for human ingenuity, and, hence, it gets the
benefit of the home turf. This is understandable—and we
may even forgive it when it seems fair—but, ideally, the
synthetic players should be in a similar situation as their
human counterparts.

3. Description of the system

AIsHockey1 is a computer game based on ice hockey (see
Figure 2). It complies the official IIHF rules [6] as care-
fully as possible. In addition to the measurements, the rules
adopted to AIsHockey include face-offs, offsides and ic-
ings. However, all the rules regarding penalties are omit-
ted; only interfering the opponent’s goalie inside the oppo-
nent’s goal crease is penalized, and it causes a face-off on
the offending team’s endzone.

The physical model implemented in the game engine
obeys Newtonian particle physics on a two-dimensional
plane. Particles are either circles, arches or lines, and they
are associated with mass, size, position, velocity and accel-
eration. For example, a player is a circle with a radius of
0.35 m and a mass of 75 kg. Collisions between particles

1The AIsHockey platform is publicly available at the address
http://staff.cs.utu.fi/staff/jouni.smed/aishockey/.
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Figure 3: The player can move forwards (dash) or back-
wards (brake) according to its orientation. The player can
shoot the puck only when it is inside the operation area.

are either elastic or inelastic. Players have an orientation
according to which they can move forwards or backwards
(see Figure 3). To simulate skating the friction depends on
the player’s orientation: along the orientation the friction
is small but perpendicular to the orientation it is large. Be-
cause the player can change the orientation to any angle
instantly, it can brake effectively by changing its orienta-
tion 90 degrees thus maximizing the friction. Player can
shoot the puck (or a goalkeeper can keep the puck), if it
resides within an operation area surrounding the player (ra-
dius 0.85 m). To communicate with other players, a player
can send messages which all players (even the opponents)
can receive.

AIsHockey draws inspiration from the simulation league
of the RoboCup initiative, where autonomous client pro-
grams play soccer [1]. Nevertheless, AIsHockey is fun-
damentally a CG, whereas RoboCup is a testbench for
robotics. The assumptions made in the simulation league
yield to the restrictions of real-world robots (e.g., sensors
and motor systems). As we emphasized earlier, AIsHockey
concentrates on the implementation of synthetic players in-
stead of robots. AIsHockey stands out also because the
pace of the game is more intense than in RoboCup.

3.1. Structure

AIsHockey is implemented with Java 2 Platform, Standard
Edition, version 1.4 by Sun Microsystems. AIsHockey pro-
vides the synthetic players with a simple interface to the
game engine. Each synthetic player is an instance of a Java
class, which inherits methods for receiving information on
the game state and for sending its own actions (e.g., mov-
ing, shooting and turning). Because each instance runs on
its own thread, the players are independent and can be dis-
tributed among several nodes in a network. To enable team-
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Figure 4: Synthetic players are distributed among the
clients, while the game engine resides in the server.

work and cooperation the players can communicate in the
game world through the server.

Figure 4 illustrates the underlying client/server network
model. The game engine runs in a server, which sends up-
date messages to the clients regularly. To reduce network
traffic this is done by using multicasting. Each client has
one or more synthetic players (i.e., Java class instances run
on separate threads), which receive the update messages
and, in return, send their commands to the server using uni-
cast. The game situation can be displayed on screen or the
game can generate a log file of the game events.

Let us now review the system briefly in MVC terms. The
core structure defines the physical laws and the basic rules
of the game. When system is started, the instance data (e.g.,
the duration of the game and the network addresses) are
used to create a state instance (i.e., the game itself). The
state instance creates a proto-view which is delivered over
the network to the clients, which modify it to a synthetic
view for the synthetic players. The proto-view can also be
rendered to a display. A synthetic player sends commands
to the control logic, which in turn updates the game state.
Since we have reduced the role of the human player on pur-
pose, human input is needed only for outside intervention
(e.g., passing judgment on situations that the game engine
cannot detect).

3.2. Implementing a synthetic player

The challenge of AIsHockey is to implement a collab-
orating team of autonomous, real-time synthetic play-

ers. As mentioned earlier, each player is defined by a
Java class which inherits the classAI from the package
fi.utu.cs.hockey.ai and implements the abstract
methodreact . Simply put, the synthetic player is just
the implementation of the this method.

The synthetic player receives information about the po-
sitions, orientations and messages of all players as well as
the position of the puck. In addition, it inherits auxiliary
methods (e.g., methodheadingTo returns the orientation
towards a given player or position) and constants defining
the measurements of the rink (e.g., the width of the goal or
the position of face-off spots).

For interacting with the game world, the synthetic player
has six methods:dash , brake , head , shoot , keep-
Puck (for goalkeepers only), andsay . The parameters of
moving and shooting are normalized to the range[0.0,1.0],
the angle of orientation is given in radians, and the message
is a long word (64 bits).

Let us give an example of a simple synthetic player:

import fi.utu.cs.hockey.ai.*;

public class MyAI extends AI
implements Constants {

public void react() {
if (isPuckWithinReach()) {

head(headingTo(0.0,
THEIR_GOAL_LINE));

brake(0.5);
shoot(1.0);
say(1050L);

} else {
head(headingTo(puck()));
dash(1.0);

} } }

The behavior of the player should be obvious: If the puck
is within the reach of the player, it changes its heading to
point to the center of the opponent’s goal. It brakes slightly,
shoots the puck with full force, and sends a message to the
other players. If the puck is not operable, the player heads
towards the puck with full speed.

4. Discussion

In the development of AIsHockey we aimed at a platform
that makes possible to study synthetic players. We wanted
to strip away the unrelated parts to expose the underlying
characteristics of a synthetic player. This process revealed
us four key features that a synthetic player must provide:

• real-time response,

• distribution,

• autonomy, and



• communication.

In the traditional turn-based games, the computer opponent
can think (almost) as long as it requires. Nowadays, CGs
are mostly real-time programs, which puts a hard computa-
tional strain on the synthetic player. It can no longer delve
into finding an optimal strategy but it should react immedi-
ately. Response is the keyword—even to such extent that
game developers tend think that it is better to have armies
of mindless bots than to grant them even a shred of intel-
ligence. It seems as if we cannot achieve both real-time
response and intelligent behavior.

Distribution has become more important now that CGs
using networking are more common. This can be a solu-
tion to the dilemma of real-time response and intelligence.
Instead of running the synthetic players on one machine,
they can be distributed so that the cumulative computa-
tional power of the networked nodes gets utilized. For ex-
ample,Homeworld(Sierra Entertainment, 1999) uses this
technique and distributes the computer-controlled oppo-
nents among the participating computers.

Distribution begs the question how autonomous the syn-
thetic players should be. As long as we can rely on the
network there is no problem, but if nodes can drop out and
join at any time, distributed synthetic players must display
autonomy. This is not necessarily a drawback, because it
can lead to a smaller and better design. Also, we must not
forget that complex behavior can emerge from seemingly
simple autonomous agents [7].

Finally, if the synthetic players are to cross the gap of
autonomy, they must start to communicate explicitly with
each other. They have to inform others on their decisions,
indicate their plans, and negotiate with each other—just
like we humans do in the real world.

4.1. Team development

The AIsHockey platform was used in a research seminar
for graduate students, where they could experiment with
the approaches presented in the scientific literature. It pro-
vided an entertaining way to address serious algorithmical
and software design issues. The students were given free
hands to choose any approach they think would be a basis
for a winning team. We were surprised by the diversity and
high quality of the presented solutions. Hardly no two stu-
dents took the same approach, and everybody tried to be on
the alert on what others were doing and how to react and
counteract their efforts.

In the overall designs, we can easily recognize the clas-
sical three-level hierarchy of decision making. On the
strategical level, there are the choices of how to win the
game (e.g., whether to play offensively or defensively).
On the tactical level, the choices concern carrying out the

strategy the best possible way (e.g., whether to use man-
marking defense or space-marking defense). On the op-
erational level, the choices are simple and concrete (e.g.,
where should the player position itself and if it has the
puck, whether to shoot it or pass it to another player). The
problem is how to choose what do. It is fairly simple on
the operational level—shoot if you have an opening, pass
if you can do it safely—but it gets harder and harder as the
level of abstraction raises.

Already at an early stage, it became evident that the
problem of forming a team boils down to whether the team
is a collection of individuals or a central-controlled unit.
Individuality relies on emergent behavior, which may be
hard to achieve intentionally. This is, however, an easy way
to proceed, since all players can run fairly similar programs
and they can be built up gradually. On the other hand, if one
opts for a hierarchy, where the decisions regarding the team
are made centrally, problems begin early. Despite the prob-
lems, purposefulness can lead to effective results, since the
team works clearly as a unit and the synthetic players can
be highly specialized. Still, if such a rigid team encounters
an opponent whose strategy is previously unknown, it can
fail utterly due to the lack of adaptiveness.

During the development there was an interesting de-
bate on whether the players should be memoryless. The
platform does not provide any form of ready-made mem-
ory, but the input is like a continuous stream of still im-
ages of the situation in the rink. At some point there was
put forth the proposition that there should be two sepa-
rate leagues, one for forgetting and another for remem-
bering players. On the whole, the advantages of memo-
ryless players—namely, their simplicity, and they apparent
effectivity against “smarter” players at the early stages—
we tipped off as the benefits of higher level abstractive rea-
soning became evident. A simple example is the wall pass,
which requires that the wall player remembers to pass the
puck back.

Surprisingly, communication remained largely under-
used. Only at the last stages of development, when more
edge was required, the benefits of expressing intentions and
commanding others became apparent. However, the com-
munication remained rather simple: the players invoke pre-
defined offense or defense patterns or express their inner
state.

As a whole, the development process demonstrates al-
most evolutionary features. It begins with a bunch of self-
ish and brutal players and sophisticates along the way into
a reasoning and communicating team.

4.2. AI programming as a game

Ideally, a game comprising just synthetic players could be
as interesting to watch as a movie or television show [2].



In other words, if the game world is fascinating enough to
observe, it is likely that it is also enjoyable to participate—
which is one interesting factor in the god games likeThe
Sims(Electronic Arts, 1999). The synthetic players seem
to act with a purpose. Sometimes a game even gathers
around a community that starts to tell stories of the things
that synthetic players have done and to interpret them in
human terms. A good example isNetHack[10], which,
after nearly twenty years, remains a cornucopia of tales.

This brings us to the idea of a game within a game. Al-
ready back in the 1980sCore Wardemonstrated that pro-
gramming synthetic players to compete with each other can
be an interesting game itself [4]. After that some games
have tried to use this approach, but, by the large, AI pro-
gramming games have been only byproducts of “proper”
games. For example,Age of Empires II: The Age of Kings
(Ensemble Studios, 2000) includes a possibility to create
scripts for computer players. This has given a rise to a new
kind of gaming, where programmers compete who creates
the best AI script. The whole game is then carried out by a
computer while the humans remain as observers.

AIsHockey has the same effect. Although the program-
mers cannot affect the outcome during the game, they are
more than just enthusiastic watchers: they are the coaches
and the parents, and the synthetic players are the protéǵes
and the children.

5. Conclusion

We presented a platform for implementing synthetic play-
ers. We discussed the role of a synthetic player in a CG
by using the MVC architectural pattern, which is also the
basis of the design of AIsHockey. We recognized four
features—real-time response, distribution, autonomy, and
communication—that a synthetic player should have, and
observed their importance in the team development.

We would like to see this work as an opening for a new
area of applicative research. Although this work concen-
trated on the sports game genre, the applicability of our
approach to other CG genres is evident. One could say
that the sports games exemplify the gameness in its purest
form. Our approach may have been somewhat narrow,
but, even to our own surprise, such a simple application
as AIsHockey has given us new insights into the problems
of computer games. And yet, it has continued to provide us
with entertainment like a good game should.
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