Can We Prevent Collusion in Multiplayer Online Games?

Jouni Smed, Timo Knuutila and Harri Hakonen

University of Turku, Finland

Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006)

Espoo, Finland
Computer Games Research Group in University of Turku

- Founded 1999
- Focuses on algorithms and networking in computer games
- Teaching:
 - courses: game algorithms, multiplayer games
 - seminars: game AI, interactive storytelling, game development project
 - MSc theses, BSc theses...
- Research results:
 - invited talk presented in GC Developer Conference, Leipzig, 2006
 - chapter in *AI Game Programming Wisdom 2*, 2003
 - ACM SIGCOMM NetGames Best Paper Award, 2004
 - journal articles, conference papers...
Co-operation and collusion

- **Forms of co-operation**
 - soft play
 - alliancing, ganging
 - expert help, scouting
 - self-sacrificing support

- **If co-operation is not allowed by the rules of the game, it is collusion**
 - collusion = covert co-operation
Example: Co-operation in *Age of Empires*

- Forming alliances
- Sharing knowledge
- Donating resources
- Sharing control
- Providing intelligence
Key questions about collusion

- What are the different types of collusion?
 - different types seem to be lumped together in the literature

- How to detect collusion reliably?
 - finding algorithms that recognize intentional behaviour from unintentional

- How to detect collusion as early as possible?
 - to minimize the harm done by colluders

- How to prevent collusion?
 - the co-operation between the maintenance and collusion detection mechanism
Roles in collusion

- We must discern the roles of partakers in a game
 - player \neq participant

- Two types of collusion
 (i) collusion among the players
 - collusion happens inside the game
 - analyse whether the players’ behaviour diverges from what is reasonably expectable
 (ii) collusion among the participants
 - collusion happens outside the game
 - analyse the participants behind the players to detect whether they are colluding
Players and participants

Instance of the game

Players

Participants

Human

Bot

Sweatshop
Level of agreement

- **Express collusion**
 - explicit hidden agreement

- **Tacit collusion**
 - no agreement but common interests
 - example: attacking the strongest/weakest opponent

- **Semi-collusion**
 - collusion on certain areas, competition on other areas
 - example: sharing a resource site, battling elsewhere
Content of agreement

- Concealed stance
 - different play method against a co-colluder than against other players

- Knowledge sharing
 - colluder gets more information than peers

- Information sharing
 - colluders exchange in-game information

- Resource sharing
 - colluders exchange in-game resources
Classification

- There are limitations in the previous classifications
 - aim at capturing the motive of collusion
 - problem: motive depends on the context and the player’s mindset → often subjective: how can you see inside the colluder’s mind?
- We classify collusion based on *how it works*
 - participant identity collusion
 - inter-player collusion
 - game instance collusion
Participant identity collusion

- How a single player is perceived to participate in a game?

(i) Player controller collusion

- the player is not controlled by a single human participant
- example: bot, sweatshop, boosters, analysers

(ii) Self-collusion

- a single participant controls multiple players
- example: throw-away characters, double-playing in poker
Inter-player collusion

- How the participants are affecting the game?

 (i) Spectator collusion
 - co-colluder provides a different type of information
 - example: ghost scouting, post-game information

 (ii) Assistant collusion
 - co-colluder plays (sacrificingly) to assist the other to win
 - example: sidekick, passive scout, spy

 (iii) Association collusion
 - co-colluders achieve individual goals through co-operation
 - example: specialization to complement each other
Game instance collusion

- How factors outside the game instance affect the game?

 (i) Multigame collusion
 - players of different game instances collude
 - example: studying the game properties, finding suitable server, fixing tournament match results

 (ii) Insider collusion
 - co-colluder is an administrator or game developer
 - example: slips from the helpdesk
Classifying the methods used in collusion detection

- **Participant identity collusion**
 - sweatshop »» intrusion monitoring
 - illicit use of bots »» CAPTCHA, public steganography
 - automatized tools »» detecting repetitive and monotonic action chains (hidden Markov models)

- **Inter-player collusion**
 - spectator collusion »» delayed feed
 - assistant collusion »» sting operations, game-playing traps
 - association collusion »» varying game content, player profiles

- **Game instance collusion**
 - multigame collusion »» controlling player accounts
Concluding remarks

- Situation is not as pessimistic as one would think reading the literature
 - our classification clarifies the focal points
- Still, there is a lot of work to be done
 - developing mathematical models
 - designing collusion detection methods
 - testing the methods in real-time environments
- Online multiplayer games need a third-party organization (like WADA) that grants and manages player-licences
Please ask us more about it!