

- ♦ questions
 - based on the lectures and additional literature (3 articles)
 - ✤ four questions à 8 points
 - ✤ to pass the examination, at least 16 points (50%) are required
 - $\boldsymbol{\star}$ questions are in English, but you can answer in English or in Finnish
- remember to enrol in time!

1999.

Additional Literature

- ◆ S. Singhal, Effective Remote Modeling in Large-Scale Distributed Simulation and Visualization Environments, PhD thesis, Stanford University, Stanford, CA, 1996. Chapter 2, pp. 13-33.
- ◆ S. Benford, C. Greenhalgh, T. Rodden, and J. Pycock, Collaborative virtual environments, Communications of the ACM, 44(7):79-85, 2001.
- ◆ J. Smed, T. Kaukoranta, and H. Hakonen, Aspects of networking in multiplayer computer games, The Electronic Library, 20(2):87-97, 2002.

Special Course on Networked Virtual Environments

Outline of the Course				
 Introduction Background history past projects and applications Networking data transfer and protocols communication architectures Managing dynamic shared state consistency-throughput trade-off centralized information repositories frequent state regeneration dead reckoning 	 5. System design threads polygon culling and level-of-detail 6. Resource management packet compression and aggregation area-of-interest filtering exploiting perceptual limitations 7. Other issues security case examples 			

Application Areas for NVEs

- Military and industrial team training
- Collaborative design and engineering
- Multiplayer games
- ♦ Mobile entertainment
- Virtual shopping malls
- Online tradeshows and conferences
- Remote customer support
- Distance learning

Synonyms, Keywords and Abbreviations

- Collaborative Virtual Environment (CVE)
- Computer-Supported Co-operative Work (CSCW)
- ◆ Media-spaces, shared spaces
- Distributed Interactive Simulation (DIS)
- Distributed Virtual Environment (DVE)
- Virtual Reality (VR), Virtual Environment (VE), Virtual Worlds
- ◆ Augmented Reality (AR)

Classification of Shared-Space Technologies 2 (2)				
synthetic Artificiality	Augmented Reality	Virtual Reality	 Augmented reality synthetic objects are overlaid on the local environment a head-up display (HUD) 	
physical	Physical Reality	Tele- presence	 Virtual reality the participants are immersed in a remote, synthetic world 	
	local remote Transportation		 a networked virtual environment (NVE) 	
Benford et al., 1998				

Basic Components of (N)VE System 2 (2)

Processing systems

- * NVEs demand a considerable amount of processing capacity
- $\boldsymbol{\ast}$ computes the effects of the user's actions
- ✤ determines when to notify other users
- ✤ receives information from other users
- ✤ controls autonomous objects
- * computes a visualization of the virtual environment

Data network

- ✤ exchange information
- * notify about environment changes
- \diamond synchronize the shared state
- communication among users

Challenges in Design and Development 1 (3)

- Difficult to implement correctly and effectively
- Include multiple traditional software types
- ♦ NVEs are
 - ✤ distributed systems
 - contend with managing network resources, data loss, network failure, concurrency
 - graphical applications
 maintain real-time display frame rate
 - ⊙ allocate the CPU among several tasks
 - ✤ interactive applications
 - process real-time input
 users should see the virtual environment as if it exists locally

- NVEs must work with other applications
 - ✤ typically integrate with database systems
 - need to support user authentication and may interact with commerce and other transaction systems
 - to support reproducible systems, must be able to log events in real-time to a persistent storage
 - \odot the complete state of the NVE may not be known at any single host
- Optimizing one element of the NVE is hazardous
- Consider as a unified system
- NVE development is a difficult balancing act of trade-offs

Challenges in Design and Development 3 (3)

Balancing of

- i. Network bandwidth
- ii. Heterogeneity
- iii. Distributed interaction
- iv. Real-time system design and resource management
- v. Failure management
- vi. Scalability
- vii. Deployment and configuration

i. Network Bandwidth

- Amount of desired information varies
- Amount of users varies
- ♦ How to allocate a limited network capacity?

ii. Heterogeneity

- Users do not have equipment with the same quality
- Whether to expose or hide the differences between participants
 connection speed, processing capacity,...
- Hide by reducing the system to the lowest common denominator
 - ✤ a single 'bad' participant causes problems for everybody else
- ◆ Take a full advance of the available resources
 - $\boldsymbol{\ast}$ user receive different levels of information
 - ✤ fair play?
- ◆ Graphical display, computational, and audio capabilities

iii. Distributed Interaction

- One of the defining qualities of an NVE system
- ◆ NVE system must provide each user with the illusion that
 - the entire environment is located on the local machine
 - the actions of the users have a direct and immediate impact on the environment
- ◆ Difficult because of the messaging required
- ♦ Each host attempts to
 - ✤ present a consistent real-time view
 - ✤ cope with out-of-date information
- Problems when multiple users or components interact
 - collision detection, agreement, and resolution among participants

iv. Real-time System Design and Resource Management

- Real-time interaction defines the process and thread architecture
 - * many tasks have hard real-time constraints
- Support quick detection and processing of user action
 - ✤ graphical image generation at fixed rate
 - $\boldsymbol{\ast}$ network packets arrive asynchronously, process them soon
 - $\boldsymbol{\ast}$ perform physics modelling and collision detection
- Everything in a single thread, use round-robin
- ◆ Segment into multiple threads, balance them
 - ✤ shared data structures on each host
 - ✤ shared locks

vi. Scalability

- Can be measured with the number of entities that may simultaneously participate in the system
 - may include human- and computer-controlled vehicles, a terrain, and even logical objects
- Also, the number of hosts, and physical distance between the hosts
- Depends on a variety of factors
 network capacity, processor capabilities, rendering speeds,...
- The complexity of an NVE increases exponentially with the number of entities because of the number possible interactions between them
- Expensive to achieve because it requires enhancements to virtually all aspects of the NVE system

- Deploying the software to participants
 - ✤ if the software is large, it is inappropriate for downloading
 - * a small core library with dynamically downloaded components
- Implications to the software design, implementation language, and supported platforms
- In the case of web browsers or light-weight platforms, ensure that the environment
 - ✤ can be easily downloaded
 - ✤ conforms the security bounds
 - ✤ executes and displays correctly across different platforms
- ◆ Participants need an access to the configuration information
 - network addresses, encryption keys, access codes, images, computational modes,...

§2 Background

- ◆ Department of Defense (DoD)
 - SIMNET
 - Distributed Interactive Simulation (DIS)
 - ✤ High-Level Architecture (HLA)
- ♦ Academic NVEs
 - ✤ NPSNET
 - ✤ PARADISE
 - ✤ DIVE
 - BrickNet
 - ✤ other academic projects
- Networked games and demos
 - * SGI Flight and Dogfight
 - ✤ Doom
 - ✤ other multiplayer games

Network Software Architecture (NSA)

- NSA includes the inseparable issues of
 - $\boldsymbol{\ast}$ what network protocol is used for the system and
 - $\boldsymbol{\ast}$ what software architecture supports that protocol,

within the confines of the available bandwidth and processor capacity.

Important to solve *both* problems at once!

U.S. Department of Defense (DoD)

- The largest developer of NVEs for use as simulation systems
 - $\boldsymbol{\ast}$ one of the first to develop NVEs with its SIMNET system
 - $\boldsymbol{\ast}$ the first to do work on large-scale NVEs

SIMNET (simulator networking)

- begun 1983, delivered 1990
- a distributed military virtual environment developed for DARPA (Defense Advanced Research Projects Agency)
- develop a 'low-cost' NVE for training small units (tanks, helicopters,...) to fight as a team

