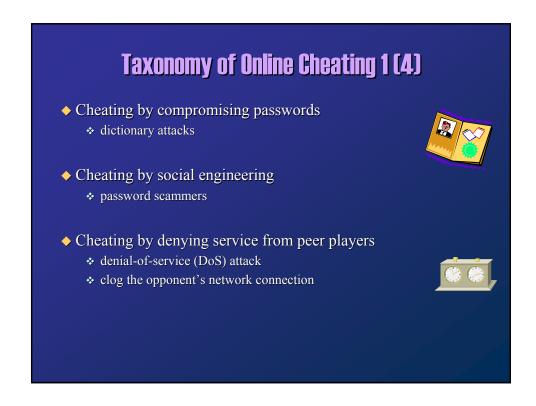
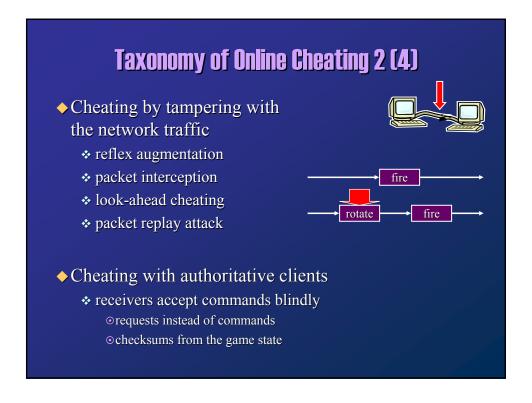
Peer-Server Systems

- Peer-to-peer: minimizes latency, consumes bandwidth
- Client-server: effective aggregation and filtering, increases latency
- Hybrid peer-server:
 - over short-haul, highbandwidth links: peer-to-peer
 - over long-haul, lowbandwidth links: client-server

- ◆ Each entity has own multicast group
- Well-connected hosts subscribe directly to a multicast group (peer-topeer)
- Poorly-connected hosts subscribe to a *forwarding* server
- Forwarding server subscribes to the entities' multicast groups
 - aggregation, filtering


Recapitulation: Resource Management Methods


- 1. Optimizing the communication protocol
 - packet compression and aggregation
- 2. Controlling the visibility of data
 - * area-of-interest filtering
- 3. Exploiting perceptual limitations
 - altering visual and temporal perceptions
- 4. Enhancing the system architecture

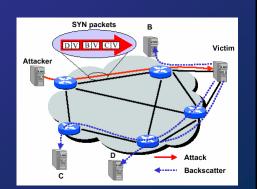
\$7 Other Issues Taxonomy of online cheating Analysis of denial-of-service activity Synchronized simulation in *Age of Empires*

Network Security Military private networks → no problem Business, industry, e-commerce,... traditional' security problems Entertainment industry multiplayer computer games, online games specialized problems

Taxonomy of Online Cheating 4 (4)

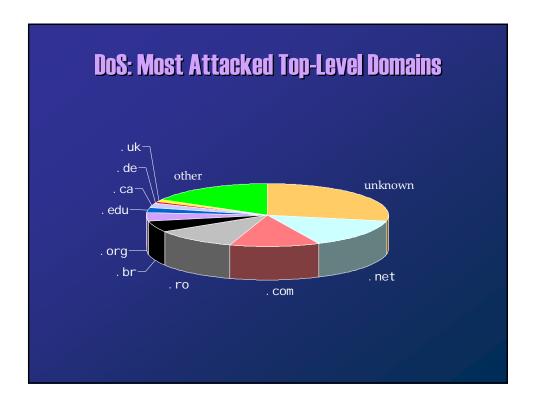
- Cheating by collusion
 - two or more players play together without informing the other participants
 - one cheater participates as two or more players

- Cheating related to virtual assets
 - \star demand \Rightarrow supply \Rightarrow market \Rightarrow money flow \Rightarrow cheating

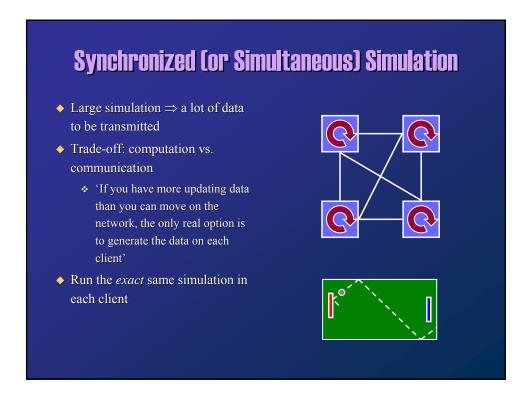

- Cheating by offending other players
 - * acting against the 'spirit' of the game
 - ⊙ players handle the policing themselves → militia
 - systems records misconducts and brands offenders as criminals
 - o players decide whether they can offend/be offended

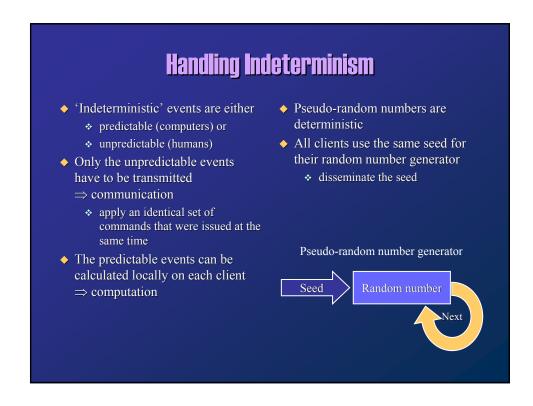
Denial-of-Service (DoS) Attack

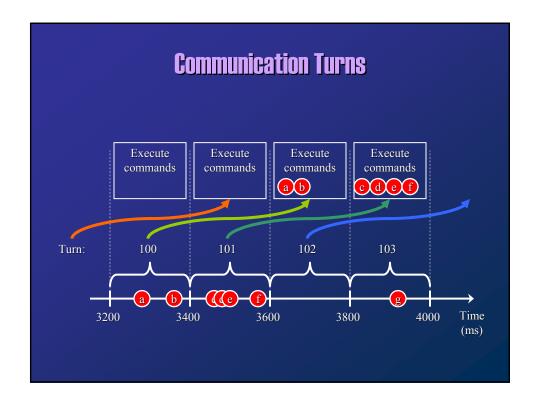
- Attack types:
 - logic attack: exploit flaws in the software
 - flooding attack: overwhelm the victim's resources by sending a large number of spurious requests
- Distributed DoS attack: attack simultaneously from multiple (possibly cracked) hosts
- ◆ IP spoofing: forge the source address of the outgoing packets
- Consequences:
 - * wasted bandwidth, connection blockages
 - computational strain on the hosts

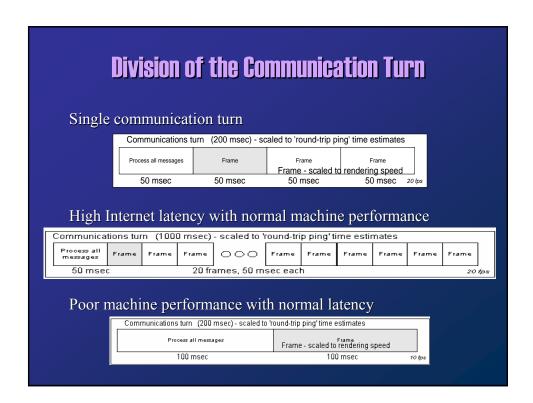

Analysing DoS Activity

- Backscatter analysis
- Spoofing using random source address
- A host on the Internet receives unsolicited responses
- ◆ An attack of m packets, monitor n addresses
- Expectation of observing an attack: $E(X) = nm/2^{32}$




Dos: Selected Results


- ◆ Three week-long logging periods, February 2001
- ◆ >12,000 attacks, >5,000 distinct targets
- ◆ Significant number of attacks were directed against
 - home machines
 - users running Internet Relay Chat (IRC)
 - users with names that are sexually suggestive or incorporate themes of drug use
 - users supporting multiplayer games
- ◆ In addition to well-known Internet sites, a large range of small and medium sized businesses were targeted



Features

- Guaranteed delivery using UDP
 - * message packet:
 - ⊙ execution turn
 - ⊙ sequence number
 - if messages are received out of order, send immediately a resend request
 - if acknowledgement arrives late, resend the message

- ♦ Hidden benefits
 - clients are hard to hack
 - any simulation running differently is out-of-sync
- Hidden problems
 - programming is demanding
 - out-of-sync errors
 - checksums for everything ⊙ 50 Gb message logs

Lessons Learned

- ♦ Players can tolerate a high latency as long as it remains constant
 - ❖ for an RTS game, even 250–500 ms latencies are still playable
- Jitter (the variance of the latency) is a bigger problem
 - consistent slow response is better than alternating between fast and slow
- Studying player behaviour helps to identify problematic situations
 - hectic situations (like battles) cause spikes in the network traffic
- Measuring the communication system early on helps the development
 - identify bottlenecks and slowdowns
- Educating programmers to work on multiplayer environments

Outline of the Course (Revisited)

- 1. Introduction
- 2. Background
 - history
 - past projects and applications
- 8. Networking
 - data transfer and protocols
 - communication architectures
- 4. Managing dynamic shared state
 - consistency-throughput tradeoff
 - centralized information repositories
 - frequent state regeneration
 - dead reckoning

- 5. System design
 - ◆ threads
 - polygon culling and level-ofdetail
- 6. Resource management
 - packet compression and aggregation
 - area-of-interest filtering
 - exploiting perceptual limitations
- 7. Other issues
 - security
 - case examples

Examinations 1 (2)

- examination dates
 - 1. March 15, 2004
 - 2. April 5, 2004
 - 3. May 10, 2004
- check the exact times and places athttp://www.it.utu.fi/opetus/tentit/
- if you are *not* a student of University of Turku, you must register to receive the credits
 - further instructions are available at http://www.tucs.fi/Education/Information/ regcredits.php

Examinations 2 (2)

- questions
 - based on the lectures and additional literature (3 articles)
 - * four questions à 8 points
 - ❖ to pass the examination, at least 16 points (50%) are required
 - questions are in English, but you can answer in English or in Finnish
- remember to enrol in time!