Special Course on Networked Virtual Environments

SIMNET

- ◆ Technical challenges
 - how to fabricate high-quality, low-cost simulators
 - $\boldsymbol{\diamond}$ how to network them together to create a consistent battlefield
- ♦ Testbed
 - ✤ 11 sites with 50–100 simulators at each site
 - $\boldsymbol{\diamond}\,$ a simulator is the portal to the synthetic environment
 - ✤ participants can interact/play with others
 - play was unscripted free play
 - \diamond confined to the chain of command

SIMNET NSA

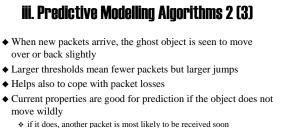
Basic components

- i. An object-event architecture
- ii. A notion of autonomous simulator nodes
- iii. An embedded set of predictive modelling algorithms (i.e., 'dead reckoning')

i. Object-Event Architecture

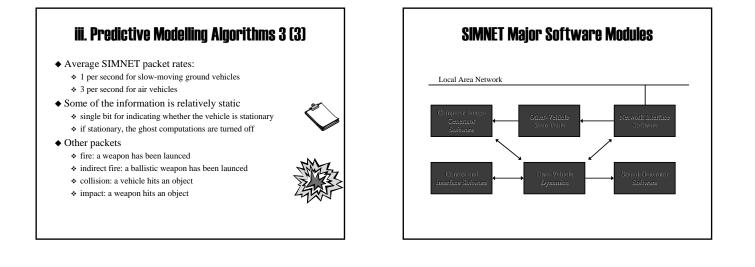
- ♦ Models the world as a collection of *objects*
 - $\boldsymbol{\diamond}$ vehicles and weapon systems that can interact
 - $\boldsymbol{\diamond}\,$ a single object is usually managed by a single host
 - 'selective functional fidelity'
- Models interactions between objects as a
- collection of *events*
- messages indicating a change in the world or object state
 The basic terrain and structures are separate from the collection
- The basic terrain and structures are separate from the colle of objects
 - if the structure can be destroyed then it has to be reclassified as an object, whose state is continually transmitted onto the network

ii. Autonomous Simulator Nodes

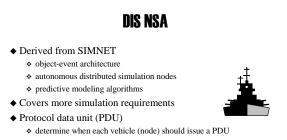

- Individual players, vehicles, and weapon systems on the network are responsible for transmitting accurately their current state
- Autonomous nodes do not interact with the recipients by any other way
- Recipients are responsible for
 receiving state change information
 - making appropriate changes to their local model of the world
- ◆ Lack of a central server
 - * single point failures do not crash the whole simulation
 - players can join and leave at any time (persistency)
- Each node is responsible for one or more objects
 - the node has to send update packets to the network whenever its objects have
 - changed enough to notify the other nodes of the change
 - ✤ a 'heartbeat' message, usually every 5 seconds

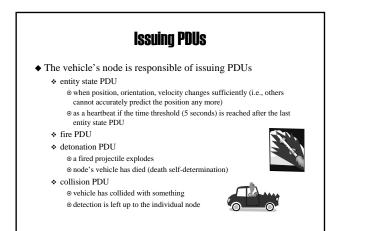
iii. Predictive Modelling Algorithms 1 (3)

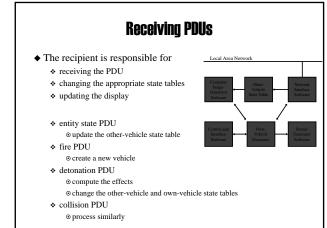
• An embedded and well-defined set of predictive modelling algorithms called *dead reckoning*

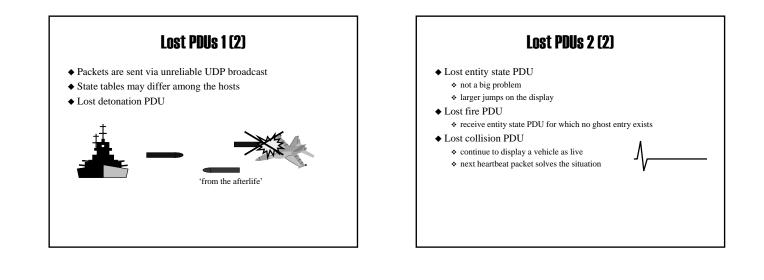


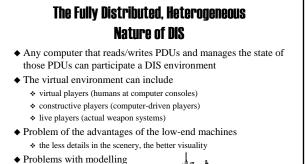
- ◆ Originally each change was reported
 - for some objects packets were generated as fast as possible (i.e., at frame rate)
 - $\boldsymbol{\diamondsuit}$ flooded the network and overloaded the CPUs
- Objects and ghosts paradigm to reduce the packet traffic:
 - objects place packets onto the network only when their home node determines that the others can *no longer predict* their state within a certain threshold
 - the other nodes maintain 'ghost' copies
 - predict the current location using the last known direction, velocity, and location


- If it does, another packet is most likely to be received soon
- \blacklozenge The heartbeat packets also update the object state


Distributed Interactive Simulation (DIS)

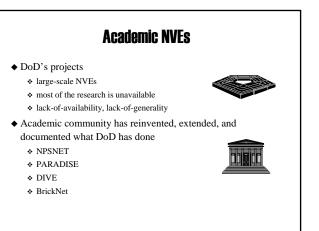

- ◆ SIMNET protocol was designed to satisfy a contract with the U.S. government
 - * did not define the NSA for general purpose simulation
 - * lack of documentation
- DIS was an attempt to formally generalize and extend the SIMNET protocol
- ◆ First version of the IEEE standard for DIS appeared 1993
- Goals
 - * to allow any type of player, on any type of machine
 - * to achieve larger simulations

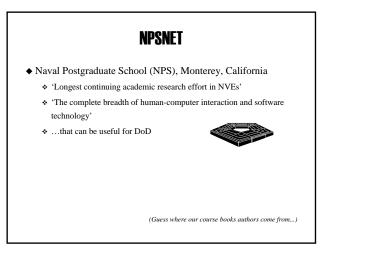

- * the DIS standard defines 27 different PDUs
- * only 4 of them interact with the environment
- ⊙ entity state, fire, detonation, and collision the rest of the defined PDUs
 - ⊙ simulation control, electronic emanations, and supporting actions

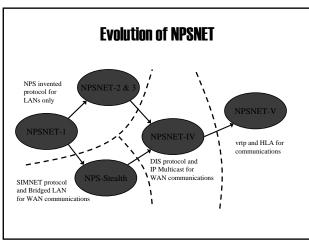

o not supported and disregarded by most DIS applications



Special Course on Networked Virtual Environments

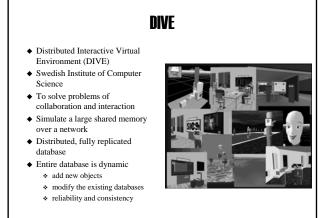

- environmental effects
 - ⊙ weather, smoke, dust,...

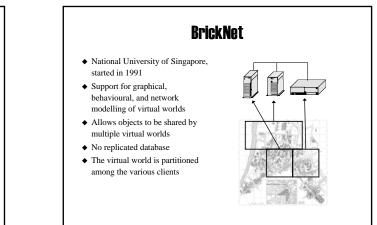

- position of a vehicle can be expressed in a subnanometer resolution (64-bit co-ordinate field)
- could be redesigned to 20% of the current size
- Designed for fewer than 300 units but DoD wants even 300,000 units
- Does not define how to define new types of information nor how to modify the DIS NSA


High-Level Architecture (HLA)

- Aims at providing a general architecture and services for distributed data exchange.
- While the DIS protocol is closely linked with the properties of military units and vehicles, HLA does not prescribe any specific implementation or technology.
 - could be used also with non-military applications (e.g., computer games)
 - $\boldsymbol{\diamond}$ targeted towards new simulation developments
- ♦ HLA was issued as IEEE Standard 1516 in 2000.

Special Course on Networked Virtual Environments


PARADISE ◆ Performance Architecture for Advanced Distributed Interactive Simulations Environments (PARADISE) ◆ Initiated in 1993 at Stanford University • Explicitly addressed NSA issues in the case of thousands users


- ◆ Assign a different multicast address to each active object
- ♦ Object updates similar to SIMNET and DIS
- ◆ A hierarchy of area-of-interest servers * monitor the positions of objects
 - * which multicast addresses are relevant

PARADISE (cont'd)

- ◆ All objects, including terrain, are capable of transmitting state updates
- Recognizes that update need varies for objects
- Improved dead reckoning protocols * position history-based dead reckoning
- ◆ Support for multiple communication flows per object unique dead reckoning for each flow
- ◆ Combine information about groups of objects * based on their location and on their type
- ◆ Support for slowly changing entities * to eliminate the heartbeat messages of DIS

