Special Course on Networked Virtual
Environments

February 6, 2004

§4.3 Frequent State Regeneration

& Many NVEs cannot afford the communications and processor
overhead required to support absolute consistency through a
centralized repository

¢ Many NVEs do not require high level consistency
< Limited and temporary error is allowable
& Smooth interface vs. absolute consistency

« Replace the distributed consistency protocol with a more
aggressive state update notification system

Frequent State Regeneration (cont'd)

 Source host does not care what state information is cached or
available to other hosts
< Each update contains whole entity state, whether or not it has
changed
& The owner of information uses blind broadcast
< asynchronously and unreliably
< at aregular interval
< forward to all participants
« The receiver does not acknowledge packets
& Assumption: high transmission rate will make inconsistencies
relatively unnoticeable
+ Even with moderate packet loss, blind broadcast can typically
deliver more packets than shared database due to its overhead

Entity Ownership: Background

+ Blind broadcasting sacrifices absolute consistency, and reduces
some flexibility that centralized repositories offer
« In a centralized repository system
< any host can modify any entity
< reliable and order-preserving updates
& With frequent state regeneration systems, ensure that multiple
hosts do not attempt to update an entity at the same time

Problem: Who's Got the Ball Now? (Part Il)

}Q

[
.

Explicit Entity Ownership

« Ensure that shared state can only be updated by one host at a
time
< exactly one host has the ownership of the state
< the owner periodically broadcasts the value of the state
« Typically user’s own representation (avatar) is owned by that
user
« Locks on other entities are managed by a lock manager server
< clients query to obtain ownership and contact to release it
< the server ensures that each entity has only one owner
< the server owns the entity if no one else does
< failure recovery

Jouni Smed

'@ Lock Manager: Example

Lock Manager

Request
Lock

Request
Lock

Reject
Lock

Update State

Special Course on Networked Virtual
Environments

February 6, 2004

Proxy Update

Update Position (A).
P e < Request Update Position e
Update Position (B)
'@
a’

+ Non-owner sends an update request to the owner of the state
The owner decides whether it accepts the update

« The owner serves as a proxy

Generates an extra message on each non-owner update

+ Suitable when non-owner updates are rare or many hosts want to update the
state

Ownership Transfer

Lock Manager

Notify Lock
Transfer
‘Acknowledge
Lock Transfer

Update Position (A)
P < Request Ownership
' . Grant Ownership

Update Position (B)

Ownership Transfer (cont'd)

+ The lock manager has the lock information at all times

« If the host fails, the lock manager defines the current lock
ownership state

« Lock ownership transfer incurs extra message overhead

+ Suitable when a single host is going to make a series of
updates and there is little contention among hosts wishing to
make updates

Reducing Broadcast Scope

« In a frequent state regeneration system, each host sends
updates to all participants

% causes hosts to receive lots of extraneous information
& Multicast and area-of-interest techniques

« filter the updates before they get sent to inappropriate recipients
& Who should do the filtering?

« the host itself?

< aserver?

& We shall return to this in 86

Frequent State Regeneration:
Advantages and Drawbacks

& Adds multi-user capabilities to existing single-user
applications

« Blind broadcasting does not require a server, consistency
protocol nor a lock manager (in most cases)

« Offers support for a large number of users
« Exhibits better interactive behaviour

Requires considerable network bandwidth

« Susceptible to network latency
< jitter = variation in network latency from one packet to the next

& Assumes that all hosts are broadcasting at the same rate

Flashback: Maintaining Dynamic Shared State

Three basic approaches to maintain dynamic shared state:
% shared repositories
< frequent broadcast
< state prediction

The Trade-off Spectrum

Absolute High
consistency update rate
Centralized Frequent Dead
information state reckoning
repositories regeneration

Jouni Smed

Special Course on Networked Virtual February 6, 2004
Environments

§4.4 Dead Reckoning of Shared State Dead Reckoning: Example

& Transmit state update packets less frequently

« Use received information to approximate the true shared state j;imed Path
< In between updates, each host predicts the state of the entities /

" Transmit

""" Remote Prediction

Dead Reckoning Protocol Prediction and Convergence
DR protocol consists of two elements:
‘ CL‘lrren‘tPre‘dicte‘d Pa‘th
+ prediction technique :
« how the entity’s current state is computed based on New Predicted Path
previously received update packets L
« convergence technique ' @
< how to correct the state information when an update is 3
received
Prediction Using Derivative Polynomials Zero-Order and First-Order Polynomials

& The most common DR protocols use derivative polynomials
& Involves various derivatives of the entity’s current position
& Derivatives of position

« Zero-order polynomial
< position p

+ the object’s instantaneous position, no derivative information

1. velocity < predicted position after t seconds = p
2. acceleration A A
s jerk =The state regeneration technique

« First-order polynomial
< velocity v
< predicted position after t seconds = vt + p 8
% update packet provides current position and velocity

Jouni Smed 3

Special Course on Networked Virtual February 6, 2004
Environments

Second-Order Polynomials

& We can usually obtain better prediction by incorporating more
derivatives
« Second-order polynomial
< acceleration a
< predicted position after t seconds
=Yaat? +vt+p
< update packet: current position, velocity, and acceleration
< popular and widely used
< easy to understand and implement
< fast to compute
< relatively good predictions of position

Jouni Smed 4

