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§4.3 Frequent State Regeneration

& Many NVEs cannot afford the communications and processor
overhead required to support absolute consistency through a
centralized repository

¢ Many NVEs do not require high level consistency
< Limited and temporary error is allowable
& Smooth interface vs. absolute consistency

« Replace the distributed consistency protocol with a more
aggressive state update notification system

Frequent State Regeneration (cont'd)

 Source host does not care what state information is cached or
available to other hosts
< Each update contains whole entity state, whether or not it has
changed
& The owner of information uses blind broadcast
< asynchronously and unreliably
< at aregular interval
< forward to all participants
« The receiver does not acknowledge packets
& Assumption: high transmission rate will make inconsistencies
relatively unnoticeable
+ Even with moderate packet loss, blind broadcast can typically
deliver more packets than shared database due to its overhead

Entity Ownership: Background

+ Blind broadcasting sacrifices absolute consistency, and reduces
some flexibility that centralized repositories offer
« In a centralized repository system
< any host can modify any entity
< reliable and order-preserving updates
& With frequent state regeneration systems, ensure that multiple
hosts do not attempt to update an entity at the same time

Problem: Who's Got the Ball Now? (Part Il)
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Explicit Entity Ownership

« Ensure that shared state can only be updated by one host at a
time
< exactly one host has the ownership of the state
< the owner periodically broadcasts the value of the state
« Typically user’s own representation (avatar) is owned by that
user
« Locks on other entities are managed by a lock manager server
< clients query to obtain ownership and contact to release it
< the server ensures that each entity has only one owner
< the server owns the entity if no one else does
< failure recovery
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+ Non-owner sends an update request to the owner of the state
# The owner decides whether it accepts the update

« The owner serves as a proxy

# Generates an extra message on each non-owner update

+ Suitable when non-owner updates are rare or many hosts want to update the
state
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Ownership Transfer (cont'd)

+ The lock manager has the lock information at all times

« If the host fails, the lock manager defines the current lock
ownership state

« Lock ownership transfer incurs extra message overhead

+ Suitable when a single host is going to make a series of
updates and there is little contention among hosts wishing to
make updates

Reducing Broadcast Scope

« In a frequent state regeneration system, each host sends
updates to all participants

% causes hosts to receive lots of extraneous information
& Multicast and area-of-interest techniques

« filter the updates before they get sent to inappropriate recipients
& Who should do the filtering?

« the host itself?

< aserver?

& We shall return to this in 86

Frequent State Regeneration:
Advantages and Drawbacks

& Adds multi-user capabilities to existing single-user
applications

« Blind broadcasting does not require a server, consistency
protocol nor a lock manager (in most cases)

« Offers support for a large number of users
« Exhibits better interactive behaviour

# Requires considerable network bandwidth

« Susceptible to network latency
< jitter = variation in network latency from one packet to the next

& Assumes that all hosts are broadcasting at the same rate

Flashback: Maintaining Dynamic Shared State

Three basic approaches to maintain dynamic shared state:
% shared repositories
< frequent broadcast
< state prediction

The Trade-off Spectrum

Absolute High
consistency update rate
Centralized Frequent Dead
information state reckoning
repositories regeneration
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§4.4 Dead Reckoning of Shared State Dead Reckoning: Example

& Transmit state update packets less frequently

« Use received information to approximate the true shared state j;imed Path
< In between updates, each host predicts the state of the entities /

" Transmit

""" Remote Prediction

Dead Reckoning Protocol Prediction and Convergence
DR protocol consists of two elements:
‘ CL‘lrren‘tPre‘dicte‘d Pa‘th
+ prediction technique :
« how the entity’s current state is computed based on New Predicted Path
previously received update packets L
« convergence technique ' @
< how to correct the state information when an update is 3
received
Prediction Using Derivative Polynomials Zero-Order and First-Order Polynomials

& The most common DR protocols use derivative polynomials
& Involves various derivatives of the entity’s current position
& Derivatives of position

« Zero-order polynomial
< position p

+ the object’s instantaneous position, no derivative information

1. velocity < predicted position after t seconds = p
2. acceleration A A
s jerk =The state regeneration technique

« First-order polynomial
< velocity v
< predicted position after t seconds = vt + p 8
% update packet provides current position and velocity

Jouni Smed 3



Special Course on Networked Virtual February 6, 2004
Environments

Second-Order Polynomials

& We can usually obtain better prediction by incorporating more
derivatives
« Second-order polynomial
< acceleration a
< predicted position after t seconds
=Yaat? +vt+p
< update packet: current position, velocity, and acceleration
< popular and widely used
< easy to understand and implement
< fast to compute
< relatively good predictions of position
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