Special Course on Networked Virtual Environments

Limitations of Derivative Polynomials

- ◆ Add more terms to the derivative polynomial—why not?
- With higher-order polynomials, more information have to be transmitted
- The computational complexity increases
 each additional term requires few extra operations
- Sensitivity to errors
 - * derivative information must be accurate
 - inaccurate values for the higher derivatives might actually make the prediction worse

 $p(t) = \frac{1}{2}at^2 + vt + p$

- ♦ Hard to get accurate instantaneous information
 - entity models typically contain velocity and acceleration
 - $\boldsymbol{\diamondsuit}$ higher-order derivatives must be estimated or tracked
 - defining jerk (change in acceleration):
 o predict human behaviour
 - ⊘ air resistance, muscle tension, collisions,...
 ♦ values of higher-order derivatives tend to change more rapidly than
 - lower-order derivatives tend to enange more rapidly than lower-order derivatives
- ⇒High-order derivatives should generally be avoided
- The Law of Diminishing Returns
 more effort typically provides progressively less impact on the overall effectiveness of a particular technique

Nonregular Update Generation

- ◆ By taking advance of knowledge about the computations at remote host, the source host can reduce the required state update rate
- The source host can use the same prediction algorithm than the remote hosts
- Transmit updates only when there is a significant divergence between the actual position and the predicted position

Advantages of Nonregular Transmissions

- Reduces update rates, if prediction algorithm is reasonable accurate
- \blacklozenge Allows to make guarantees about the overall accuracy
- The source host can dynamically balance its network transmission resources
 - $\boldsymbol{\star}\ limited\ bandwidth \Rightarrow increase\ error\ threshold$
- Nonregular updates provide a way to dynamically adapt the consistency-throughput trade-off based on the changing consistency demands

Special Course on Networked Virtual Environments

Lack of Update Packets

- If the prediction algorithm is really good, or if the entity is not moving significantly, the source might never send any updates
- New participants never receive any initial state
- Recipients cannot tell the difference between receiving no updates because
 - the object's behaviour has not changed
 - the network has failed
 - $\boldsymbol{\diamond}$ the object has left the NVE
- ◆ Solution: timeout on packet transmissions

Dead Reckoning: Advantages and Drawbacks

- ◆ Reduces bandwidth requirements because updates can be transmitted at lower-than-frame-rate
- Because hosts receive updates about remote entities at a slower rate than local entities, receivers must use prediction and convergence to integrate remote and local entities
- Does not guarantee identical view for all participants
 tolerate and adapt to potential differences
- ◆ Complex to develop, maintain, and evaluate
- Dead reckoning algorithms must often be customized for particular objects
- ◆ Are entities predictable?

Recapitulation: Managing Dynamic Shared State

- Consistency-throughput trade-off
- Centralized information repositories
- Frequent state regeneration
- Dead reckoning

Absolute consistency		High update rate
4		
Centralized	Frequent	Dead
information	state	reckoning
repositories	regeneration	

