

Polygon Culling

- Reduce the number of processed polygons * determine which polygons do not need to be drawn
- A wealth of research and methods exists
- Assumes that the underlying 3D model remains quite static
* changes in the model \Rightarrow changes in the culling data structure

Potentially Visible Sets [PVSs] of Polygons

Binary space partitioning tree

Real-Iime Collision Detection Solutions

- Approaches to collision detection
* geometric reasoning
* bounding volume hierarchy
* analytical methods
* hybrid
- Fast, approximate collision detection
* ownship: static object collisions
\star ownship: moving object collisions
- Fast, accurate collision detection

Real-Time Collision Detection and Response

- Interacting with the VE
* touching, grasping, standing,...
- Take some action in response to the collision
- Is there an intersection with the polygons of an object and the polygons of any other object?
* test bounding boxes
* utilize hierarchical data structures
- Where are the precise contact points?

Fast, Approximate Collision Detection

- Important to recognize that a collision has occurred
- The precise location of the collision is unimportant
- Example: NPSNET
* moving objects can collide with each other and with fixed, static objects
* upon collision over a certain speed \Rightarrow the moving object dies
* no sophisticated physics
- Ownship = the local player in the VE

1. Moving object (ownship) against static objects
2. Moving object (ownship) against moving objects (other players)

- Up to the ownship to report its collisions and its death

Ownship: Static Object Collisions

- Occurs when an object has moved and its position is updated
- Reduce the set of static objects that must be considered

1. Is the ownship below the a threshold elevation?
2. Calculate 2D distance to all objects in the grid square
3. Is the ownship's ground elevation less than the height of the static object?

- Issue a detonation PDU or an entity state PDU

Fast, Acurrate Collision Detection

- Sweep-and-prune algorithm
- An axially aligned 3D bounding box for each object
- Sort the bounding boxes
- Are the bounding boxes overlapping?
* for 3D bounding boxes to collide, their projections must overlap
- Are the the convex hulls overlapping?
- Compute the actual area of collision

Problems of Collision Detection in NVEs

- Who determines collision in an NVE?
- The object that has collided
* DIS does not require that the hosts use the same collision detection algorithm
* what if one decides to die, whilst another decides that there was no collision
* fair play requires a standard for collision detection
- What about collisions that happen
$\%$ in between time steps, or
* for dead-reckoned objects?

Computational Resource Management

- How to allocate processor time for the processes
* do we leave it to the operating system?
- A blocked thread should yield the processor to the threads in waiting
- Subsystems in separate threads
* input subsystem
* net read subsystem
* display subsystem
* net write subsystem
* modelling subsystem

Collisions for Dead-Reckoned Objects

- The ownship may determine collision with a dead-reckoned object and issue a packet
- The object collided with is at a slightly different actual position
* no collision
\star collision with different results
- Mechanism for establishing an agreement on which the objects reach an acceptable conclusion
- Recognize arriving packets that indicate mutual collision
* the object that missed the collision must also realize it
* problem between the time of real collision and the learning time
$*$ how to correct the past?

