

Implementation Examples

- ♦ Client-server
 - each transmission identifies its channel
 - server dispatches data from channels to clients
- Multicast group for each region
 assign multiple addresses for each region
 on group group group de all of the artifica' high resolution
 - one group provides all of the entities' high-resolution channels, another group provides all of the entities' low-resolution channels
- Multicast group for each entity

 assign multiple addresses for each entity
- Different reliabilities to each channel
 low-frequency updates are important
 o lost packets can have a significant impact

Special Course on Networked Virtual Environments

Exploiting Temporal Perception

- ◆ Render the entity in an accurate location albeit slightly outof-date
- ♦ As long as the local user does not interact, small temporal inaccuracies can be allowed
- ♦ Advantages:
 - ✤ works on WANs having great latency
 - ✤ can enhance packet aggregation
 - can enhance dead reckoning

Active and Passive Entities

- An active entity
 - takes actions on its own
 generates updates
 - buman participants, computer-
 - controlled entities cannot be predicted typically
 - rendered using state updates adjusted for the latency

- A passive entity
 - reacts to events from the environment, does not generate its own actions
 - inanimate objects (e.g., rocks, balls, books)
 - active entities interact with passive entities
 - rendered according to the latency of its nearest active entity
 - reacts instantaneously to the actions of a nearby active entity

Special Course on Networked Virtual Environments

Generalizing the Local Temporal Contour

- ◆ Limitations:
 - players are capable of moving along a single axis only
 - ✤ supports two active objects only
- ◆ Generalization to a 4D co-ordinate system requires preserving for the local user:
 - * interacting naturally with passive objects in vicinity
 - seeing remote interactions (passive-to-passive, passive-to-active) naturally
 - * perceiving smooth motion of remote objects

Special Course on Networked Virtual Environments

§6.4 Enhancing the System Architecture

- ◆ Change the network software architecture
- ◆ Basic structures: client-server and peer-to-peer
- Augment and combine basic structures
 - server clusters

 partition clients across multiple servers
 partition the NVE across multiple servers
 - server hierarchies
 - peer-server systems

Fraditional Client-Server Server may act as broadcast reflector filtering reflector packet aggregation server Scalability problems all traffic goes through the server Server clusters

